Superheavy elements in kilonovae

E. Holmbeck, J. Barnes, K. Lund, T. M. Sprouse, G. C. McLaughlin, M. Mumpower

Unpublished ApJL 951 L13 (2023)

As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first "kilonova" associated with a binary neutron star binary (NSM) suggests that these sites are hosts of the rapid neutron capture ("r") process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron rich nuclei for which superheavy elements ($Z \ge 104$) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy element synthesis in nature. Favorable NSMs conditions yield a mass fraction of superheavy elements is $X_{Z \ge 104} \sim 3× 10^{−2}$ at 7.5 hours post-merger. With this mass fraction of superheavy elements, we find that kilonova light curves may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.


Contact Me


Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87545

Office Phone

(505) 667-5671