The impact of global nuclear mass model uncertainties on $r$-process abundance predictions

M. Mumpower, R. Surman, A. Aprahamian

Published CGS15 (2014)

Rapid neutron capture or \'$r$-process\' nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of $r$-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on $r$-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms) errors of current mass models are large so that current $r$-process predictions are insufficient in predicting features found in solar residuals and in $r$-process enhanced metal poor stars. We conclude that the reduction of global rms errors below $100$ keV will allow for more robust $r$-process predictions.

Contact Me

Mail

Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87545

Office Phone

(505) 667-5671