Markov Chain Monte Carlo predictions of neutron-rich lathanide properties as a probe of $r$-process dynamics

N. Vassh, G. C. McLaughlin, M. Mumpower, R. Surman

Published ApJ 907 98 (2021)

Lanthanide element signatures are key to understanding many astrophysical observables from merger kilonova light curves to stellar and solar abundances. To learn about the lanthanide element synthesis which enriched our solar system, we apply the statistical method of Markov Chain Monte Carlo to examine the nuclear masses capable of forming the r-process rare-earth abundance peak. We describe the physical constraints we implement with this statistical approach and demonstrate the use of the parallel chains method to explore the multi-dimensional parameter space. We apply our procedure to three moderately neutron-rich astrophysical outflows with distinct types of r-process dynamics. We show that the mass solutions found are dependent on outflow conditions and are related to the r-process path. We describe in detail the mechanism behind peak formation in each case. We then compare our mass predictions for neutron-rich neodymium and samarium isotopes to the latest experimental data from the CPT at CARIBU. We find our mass predictions given outflows which undergo an extended (n,$\gamma$)($\gamma$,n) equilibrium to be those most compatible with both observational solar abundances and neutron-rich mass measurements.


Contact Me


Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87545

Office Phone

(505) 667-5671