Actinide-rich and actinide-poor r-process enhanced metal-poor stars do not require separate r-process progenitors

E. Holmbeck, A. Frebel, G. C. McLaughlin, M. Mumpower, T. M. Sprouse, R. Surman

Submitted submitted (2019)

The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, r-process enhanced stars into theoretical studies of r-process production can offer crucial constraints on the origin of heavy elements. In this study, we introduce and apply the "Actinide-Dilution with Matching" model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize r-process ejecta mass as a function of election fraction. We find that actinide-boost stars do not indicate the need for a unique and separate r-process progenitor. Rather, small variations of neutron richness within the same type of r-process event can account for all observed levels of actinide enhancements. The very low-Ye, fission-cycling ejecta of an r-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical Ye distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, r-process enhanced stars.

Contact Me

Mail

Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87544

Office Phone

(505) 667-5671