Actinide-rich and actinide-poor r-process enhanced metal-poor stars do not require separate r-process progenitors

E. Holmbeck, A. Frebel, G. C. McLaughlin, M. Mumpower, T. M. Sprouse, R. Surman

Published ApJ 881 1 (2019)

The astrophysical production site of the heaviest elements in the universe remains a mystery. Incorporating heavy element signatures of metal-poor, r-process enhanced stars into theoretical studies of r-process production can offer crucial constraints on the origin of heavy elements. In this study, we introduce and apply the "Actinide-Dilution with Matching" model to a variety of stellar groups ranging from actinide-deficient to actinide-enhanced to empirically characterize r-process ejecta mass as a function of election fraction. We find that actinide-boost stars do not indicate the need for a unique and separate r-process progenitor. Rather, small variations of neutron richness within the same type of r-process event can account for all observed levels of actinide enhancements. The very low-Ye, fission-cycling ejecta of an r-process event need only constitute 10-30% of the total ejecta mass to accommodate most actinide abundances of metal-poor stars. We find that our empirical Ye distributions of ejecta are similar to those inferred from studies of GW170817 mass ejecta ratios, which is consistent with neutron-star mergers being a source of the heavy elements in metal-poor, r-process enhanced stars.

Contact Me

Mail

Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87544

Office Phone

(505) 667-5671