The impact of nuclear physics uncertainties on galactic chemical evolution predictions

B. Côtè, P. Denissenkov, F. Herwig, C. L. Fryer, K. Belczynski, N. Vassh, M. Mumpower, J. Lippuner, M. Pignatari, A. J. Ruiter

Unpublished NPA IX (2019)

Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the $\sim$ 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized and ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.



r-process galactic chemical evolution

Contact Me


Matthew Mumpower
Los Alamos National Lab
MS B283
TA-3 Bldg 123
Los Alamos, NM 87545

Office Phone

(505) 667-5671