$U(r)=-\frac{W_0r_0}{r}\exp\left(-\frac{r}{r_0}\right)$
$\frac{E_{bind}}{c^2}=a_1A-a_2A^{2/3}-a_3\frac{Z(Z-1)}{A^{1/3}}-a_4\frac{(N-Z)^2}{A}+\epsilon a_5A^{-3/4}$
$R=R_0\left[1+\sum_{lm}a_{lm}Y_l^m(\theta,\varphi)\right]$

Matthew Mumpower

Staff Scientist @ Los Alamos National Lab

About Me

I'm a theoretical physicist working at Los Alamos National Lab. I received my PhD at North Carolina State University under the direction of Gail McLaughlin. At the University of Notre Dame I worked under the direction of Ani Aprahamian and Rebecca Surman. My research interests are in nuclear structure and reaction mechanisms. The study of these models has a wide range of applicability from nuclear medicine, to stockpile stewardship and even the cosmos.

At Los Alamos we seek to solve national security challenges through scientific excellence. This means we not only apply our models to the task at hand, but we seek to push them to the limits by probing the edges of our knowledge with basic science research. One way I contribute to basic science research at the lab is to study the applicability of LANL nuclear models to nucleosynthesis. Nucleosynthesis is the study of the processes by which chemical elements are synthesized in cosmic environments. In other words, this part of my research focuses on how the elements on the periodic table were created. This field is extremely challenging and also very rewarding with many real world applications. Check out the research section of this website for more information.

I firmly believe that practicing in scientific inquiry is both empowering and a necessary requirement for success in today's world. You can learn more about my teaching efforts in the teach section of this website.

Outside of Physics I enjoy keeping up with latest technology trends and coming up with unique solutions to challenging problems. For more about my entrepreneurial endeavours check out Solace Development Group. In my free time I try to stay in shape by playing racquetball. If you are interested in a game, shoot me an e-mail.

Latest Paper (July 18th 2018)

Actinide production in neutron-rich ejecta of a neutron star merger

The rapid-neutron-capture ("$r$") process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of $r$-process nucleosynthesis can reproduce abundances derived from observations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of...

Select Papers

r-Process Nucleosynthesis: Connecting Rare-Isotope Beam Facilities with the Cosmos

C. Horowitz et al.
submitted - Published February 26th 2018
This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will soon have dramatic new capabilities to synthesize many neutron rich nuclei that are involved in the r-process. The new capabilities can significantly improve our understanding of the r-process and likely resolve one of the main outstanding problems in classical nuclear astrophysics. However, to make best use of the new experimental capabilities and to fully interpret the results, a great deal of infrastructure is needed in many related areas of astrophysics, astronomy, and nuclear theory. We will place these experiments in context by discussing astrophysical simulations and observations of r-process sites, observations of stellar abundances, galactic chemical...

Estimation of M1 scissors mode strength for deformed nuclei in the medium to heavy mass region by statistical Hauser-Feshbach model calculations

M. Mumpower et al.
PRC 96 024612 - Published August 17th 2017
Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density and $\gamma$-strength function as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV $\sim$ a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode...

Racquetball

In my free time I play competitive racquetball. I was one of the top ranked players of the North Carolina State University Racquetball Club from 2008 to 2012. I designed their website which you can find an image of right here.