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The development in the description of the masses of atomic nuclei has led to various nuclear mass
models that can predict the masses across the whole chart of nuclides. These mass models play an
important role in understanding the synthesis of heavy elements in the rapid neutron capture process
(the r-process). However, it is still a challenging task to estimate the size of uncertainty associated
with the predictions of each mass model. In this work, a method to quantify the mass uncertainty
using ensemble Bayesian model averaging (EBMA) is introduced. This Bayesian method provides a
natural way to perform model averaging, selection, calibration, and uncertainty quantification, by
combining the mass models as a mixture of normal distributions, whose parameters are optimized
against the experimental data, employing the Markov chain Monte Carlo (MCMC) method using
the No-U-Turn sampler (NUTS). The average size of our best uncertainty estimates of neutron
separation energies based on the AME2003 data is 0.48 [MeV] and covers 95 % of new data in
AME2020. The uncertainty estimates can also be used to detect outliers with respect to the trend
of experimental data and theoretical predictions.

I. INTRODUCTION

Since the first introduction of the nuclear liquid drop
model, the theoretical description of nuclear masses has
seen great progress, which gave rise to many related
but different approaches. It is now possible to describe
the ground state properties of nuclei across the chart
of nuclei with theories of different scales: Macroscopic-
microscopic theories such as the Finite-Range Droplet
Model (FRDM) [1, 2], Weizsäcker-Skyrme (WS) models
[3–6], microscopically inspired Duflo-Zucker models [7],
and more microscopic theories such as nuclear density
functional theory (DFT) with different interactions or
energy density functionals (EDFs) [8–10].

These global mass models play an important role in
understanding the origin of heavy elements in the Uni-
verse via the rapid neutron capture process (r-process)
[11–13]. This is because the nuclear masses determine
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the Q-value (energy release) of nuclear reactions and de-
cays, which also affect their rates (e.g., β-decay rates
∝ Q3–7 [14, 15]). However, the masses of the vast major-
ity of neutron-rich nuclei relevant to the r-process have
yet to be experimentally studied. Therefore, the mass
models used in nucleosynthesis studies have a significant
impact on the resulting abundance patterns and kilonova
lightcurves [16, 17].

One of the challenges in understanding the impact of
mass models on nucleosynthesis is that, in general, uncer-
tainty estimates associated with the theoretical masses
are not available. Although there has been an effort
to quantify uncertainty in microscopic theories [18, 19],
the mass models that are typically used in nucleosynthe-
sis studies, especially macroscopic-microscopic and phe-
nomenological models, do not come with quantified pre-
diction uncertainty. One may calculate the root mean
square error of each mass model with respect to the obser-
vations, but it most likely underestimates the uncertainty
where there are no data (see Figure 1). Furthermore, the
possibility of quantifying the uncertainty by combining
multiple mass models and observations has been largely
unexplored. This poses a challenge in quantifying the
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uncertainty in the r-process nucleosynthesis that arises
from uncertain nuclear masses.

As the next-generation radioactive isotope beam facil-
ities allow us to have access to more neutron-rich iso-
topes, it becomes possible to test the performances of
the mass models in the extremely neutron-rich regions
of the chart of nuclides. In experimental studies of nu-
clear masses, usually only the new experimental results
are compared with the theoretical predictions. It is often
done by calculating the root mean square error (RMSE)
(for examples of mass measurements relevant to the r-
process, see Refs. [21–24]), but this does not fully com-
bine all the available experimental data. Therefore, a
statistical method to test the predictions of various the-
oretical models and evaluate the impact of new measure-
ments on the uncertainty of extrapolated masses would
be an improvement to the current situation.

In this work, we will apply a method called ensem-
ble Bayesian model averaging (EBMA) introduced by
Ref. [25] to combine available experimental data and
multiple theoretical mass models as well as quantify the
mass uncertainty. This method models an ensemble of
theoretical mass models as a mixture of normal distri-
butions, whose parameters are estimated based on the
observations. The EBMA combines model calibration,
selection, averaging, and uncertainty quantification in a
single framework. The resulting probabilistic model is
highly interpretable. This Bayesian method is quite gen-
eral and it can be readily applied to other nuclear physics
observables.

Recently, data-driven modeling of nuclear masses us-
ing machine learning techniques has been quickly gaining
popularity [26–33]. Especially, probabilistic models have
achieved high accuracy while providing an estimate of
uncertainty. Although there have been attempts to con-
struct physically interpretable models [33], it is generally
challenging to gain insight into the underlying physics
from machine learning models. Nevertheless, the advan-
tages of machine learning models are that they can be
created rapidly and often achieve similar performance
to state-of-the-art theoretical models. While they may
not be able to predict new or unknown physics, they can
combine physics that they learn in potentially novel ways
that are difficult to produce through standard modeling.

The purpose of this study is not to create another mass
model or to improve existing ones with machine learning.
Rather, the aim is to investigate how well an ensemble of
theoretical models can reproduce experimental data and
quantify the performance of each model in the ensemble.
This quantifies the uncertainty in extrapolating the ex-
perimental data. Our approach should be considered as
a method for model averaging, selection, calibration, and
uncertainty quantification, using only existing theoretical
models.

This paper is divided into the following sections: in
Sec. II, we discuss the details of the EBMA method and
the numerical experiment in which we construct EBMA
models; in Sec. III, we discuss the results of the different

approaches for constructing EBMA models and the de-
tails of the quantified uncertainties for one neutron sepa-
ration energies; finally, we summarize the work presented
in the paper and describe possible applications in Sec. IV.

II. METHOD

A. Bayesian model averaging

We start by describing the general framework of
Bayesian model averaging (BMA). BMA is applicable
when more than one statistical model that describes
the data reasonably well is available, and one wishes
to account for the uncertainty in the analysis arising
from conditioning on a single model. BMA computes
a weighted average of the probability density functions
(PDFs), weighted by the posterior probability of the
“correctness” of each model given the training data. Fol-
lowing the description in Refs. [25, 34], the posterior
distribution of the observable of interest ∆, defined by
BMA, is

p(∆ | D) =

K∑
k=1

p(∆ |Mk, D) p(Mk | D), (1)

where p(∆ | Mk, D) is the posterior PDF of the ob-
servable of interest based on a single statistical model
Mk, and p(Mk | D) is the corresponding posterior model
probability, which represents how well the model Mk fits
the data D. The posterior model probabilities can be
considered as weights, since their sum is equal to 1.

B. Ensemble Bayesian model averaging

One of the limitations in the applicability of the
BMA method is that the participating models themselves
must be probabilistic. In nuclear physics, most mod-
els are not probabilistic. Therefore, we need to extend
the BMA framework to handle such models. Raftery
et al. [25] introduced the ensemble Bayesian model av-
eraging (EBMA) method, which computes the weighted
average of an ensemble of bias-corrected models, as a
finite mixture of normal distributions. In the EBMA
framework, the predictive model is

p(∆ | m1, . . . ,mk) =

K∑
k=1

wk gk(∆ | mk), (2)

where wk is the weight of the model mk, whose posterior
represents the probability of the model k being the best
one, based on the observed data D. Since the size of the
weight depends on the relative performance of the model,
even if the ensemble includes a pathological model, its
effect on the predictive distributions of EBMA is quite



3

20 30 40 50 60 70 80
N

−2

−1

0

1

2

S
n
−
S

F
R

D
M

12
n

[M
eV

] (a) Z = 28

DZ28 HFB31 KUTY05 ETFSI2 WS4 AME2012

40 50 60 70 80 90 100 110 120
N

−2

−1

0

1

2

S
n
−
S

F
R

D
M

12
n

[M
eV

] (b) Z = 50

DZ28 HFB31 KUTY05 ETFSI2 WS4 AME2012

60 70 80 90 100 110 120 130 140 150
N

−2

−1

0

1

2

S
n
−
S

F
R

D
M

12
n

[M
eV

] (c) Z = 64

DZ28 HFB31 KUTY05 ETFSI2 WS4 AME2012

FIG. 1. Comparison of one-neutron separation energies (Sn) predicted by each mass model used in this study and the experi-
mental masses from the AME2020 [20], relative to the predictions of the FRDM2012 for (a) Z = 28 (Ni), (b) Z = 50 (Sn), and
(c) Z = 64 (Gd) isotopes.

small, since an extremely small weight would be assigned
to the model. gk(∆ | mk) is a normal PDF with mean
defined by the bias-corrected model predictions and stan-
dard deviation σk:

gk(∆ | mk) = N(∆ | ak + bkmk, σ
2
k), (3)

where ak and bk are the bias-correction coefficients, which
are discussed in more detail in the following section. In
the original EBMA by Raftery et al. [25], a constant stan-
dard deviation was used across all the models in the en-
semble; however, we take it as model dependent (denoted
by the subscript k), which is a more natural way to con-
struct a mixture model.

1. Bias correction

In constructing EBMA models, although not strictly
necessary, Ref. [25] linearly corrects the bias of the pre-
diction of each model, as shown in Equation 3. Since
most mass models are already fitted to the experimen-
tal data, the values of the bias-correction coefficients are
expected to be ak ∼ 0 and bk ∼ 1, where the original
prediction of the model is obtained when ak = 0 and
bk = 1.

Ref. [25] suggests that ak and bk for each k = 1, . . . ,K
are determined by linear regression. Another way to de-
termine these parameters ak and bk is by Bayesian linear
regression and taking the maximum a posteriori (MAP)
values, which is a slightly more probabilistic treatment.
In our case, the two approaches yield virtually identical
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values. The coefficients determined for each mass model
using the entire AME2020 data are shown in Table I, for
example.

2. Bayesian inference

The parameters of interest in our statistical inference
are the weights wk(k = 1, . . . ,K) and the standard devia-
tions of the normal distributions that correspond to each
of the theoretical mass models in the ensemble. There-
fore, prior distributions for the parameters must be spec-
ified. In general, we try to choose the prior distributions
to be as weakly informative as possible. For the weights,

since the weights have to sum up to one:
∑K
k=1 wk = 1,

we model the parameters with a Dirichlet distribution of
order K, which meets this requirement. Therefore, the
prior for the weights is

p(w1, w2, . . . , wk)

= Dirichlet(w1, w2, . . . , wk | α1, α2, . . . , αk)

=
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

wαk−1
k , (4)

where α1, α2, . . . , αk are called the “concentration pa-
rameters”, and Γ(·) is the gamma function [35]. The con-
centration parameters of the Dirichlet distribution are set
to 1 to ensure that the prior distributions are only weakly
informative. The prior distributions for the standard de-
viations are chosen to be exponential distributions with
the rate parameters equal to 1, which has been suggested
to be one of the weaker priors [36].

The likelihood of the normal mixture model is defined
as

L(w1, . . . , wK , σ
2
1 , . . . , σ

2
K)

=
∏
(n,p)

(
K∑
k=1

wkgk(∆(n,p) | mk,(n,p))

)
, (5)

TABLE I. Bias-correction coefficients determined from the
MAP values of Bayesian linear regression (labeled as “BLR
MAP”) and usual linear regression (labeled as “LR”), respec-
tively, using the AME2020 [20] data. ak and bk are the coef-
ficients for intercept and slope, respectively, for mass model
k. The values are rounded to four decimal places.

ak bk

Mass model BLR MAP LR BLR MAP LR

WS4 -0.0230 -0.0230 1.0022 1.0022
DZ29 -0.1176 -0.1176 1.0141 1.0141

FRDM12 0.0528 0.0528 0.9930 0.9930
KUTY05 0.4373 0.4373 0.9441 0.9441
ETFSI2 0.7694 0.7694 0.9036 0.9036
HFB31 0.2093 0.2093 0.9749 0.9749
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FIG. 2. Comparison of the AME2003 data with the latest
AME2020 data for one-neutron separation energies Sn, il-
lustrated on the chart of nuclides. The blue squares show
the new Sn in the AME2020 values that did not exist in the
AME2003. The Sn values listed in the AME2003 are shown
in orange color.

where the subscript (n, p) represents pairs of neutron
number n and proton number p of the nuclei where obser-
vations exist. In practice, the logarithm of the likelihood
(log-likelihood) is often used for computation to avoid
numerical problems.

With the prior distributions and the likelihood func-
tion, it is now possible to formulate the posterior distri-
butions for the parameters of the EBMA model.

p(w,σ2 | D) ∝ L(w,σ2) p(w) p(σ2), (6)

where w = w1, . . . , wK , σ2 = σ2
1 , . . . , σ

2
K , and D denotes

observational data. The prior distributions are denoted
as p(w) and p(σ2), respectively.

3. Predictive variance

In EBMA models, the uncertainty of the quantity of in-
terest is provided in the form of variance of the posterior
predictive distribution. Based on Ref.[25] but reflecting
the fact that our σk depends on model k, the predictive
variance can be written as

Var(∆ | m1,m2, . . . ,mK)

=

K∑
k=1

wk

(
(ak + bkmk)−

K∑
i=1

wi(ai + bimi)

)2

+

K∑
k=1

wkσ
2
k, (7)

where the first term corresponds to the spread of predic-
tions by the member mass models of the ensemble, and
the second term corresponds to the expected deviation
from the observations of each mass model, weighted by
the posterior weights.
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σRMS = 0.171 [MeV]
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FIG. 3. Deviation and root mean square error (RMSE) σRMS [MeV] of the neutron separation energies Sn reconstructed by
the EBMA models fitted with (a) the whole chart of nuclides, (b) each isotopic chain (Z = const.), (c) each isotonic chain
(N = const.), and (d) each isobaric chain (A = const.), compared to the AME2020 [20].

4. Differences to related works and discussion of models

It is worth discussing the key differences between our
framework and related studies that use the BMA method,
namely Refs.[28, 29, 37–39]. In their BMA framework,
the uncertainty quantification of the considered mass
models is performed by constructing Gaussian Process
(GP) emulators, which learn the corrections to the mass
models from the residuals with respect to the observed
values. Therefore, the quality of the prediction and the
corresponding uncertainty mainly depend on the perfor-
mance of the GP emulator. The BMA weights are calcu-
lated either based on some criteria such as nuclei being
bound or the performances of each mass model on the
test data. One of the drawbacks of this method is that
the derived weights are point estimates, and the resulting
BMA uncertainty is a deterministic weighted average of
the GP uncertainties. Furthermore, one has to be cau-
tious when performing extrapolations using GPs, since
an unconstrained GP converges to its mean with fixed
uncertainty away from the data [40, 41].

On the other hand, the EBMA framework keeps the
point predictions of the mass models in the ensemble.
Instead, the weights and variances associated with each

mass model are modeled probabilistically based on the
experimental data. The probabilistic distributions are re-
flected onto the resulting predictive uncertainty through
the Bayesian framework. In this framework, the pre-
dictions of each mass model that constitute the EBMA
model are only linearly calibrated; therefore, the local
trend of the predictions remains unchanged.

One of the shortcomings of the current method is that
the inference of posterior weights is performed assuming
that all observed data points are equally relevant. In
the case of uncertainty quantification of mass models for
neutron-rich nuclei, for example, one may wish to esti-
mate the weights by focusing on the data for neutron-
rich nuclei. However, this poses a trade-off since the
weights are better estimated using all available data,
while only using data in a specific region may better cap-
ture the local performances of the mass models. The con-
cept of such location-dependent weights is referred to as
“Bayesian Model Mixing”, put forward by Refs. [42, 43].
However, further technical development would be re-
quired to incorporate location-dependent weights into the
averaging of mass models, which will be investigated in
the future. In this work, we provide a methodology for
the averaging of general nuclear mass models, using data
across the chart of nuclides as described in Sec. II C. It is
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assumed that the dependence of uncertainty on location
is represented by the spread of the predictions of different
mass models, as shown in Fig. 1.

C. Setup of numerical experiment

In the numerical experiments discussed in the current
work, all probabilistic models have been implemented us-
ing PyMC [44], which is a probabilistic programming lan-
guage written in Python. PyMC offers an implemen-
tation of a highly efficient sampler called No-U-Turn-
Sampler (NUTS), which adaptively tunes the parame-
ters associated with the Hamiltonian (or Hybrid) Monte
Carlo method [45, 46]. Conventionally, parameter esti-
mation in mixture models is performed with the Expecta-
tion Maximization (EM) algorithm to avoid the so-called
“label switching problem” [47, 48]. The label switching
problem arises in mixture models such as EBMA mod-
els, since the likelihood (Eq. 5) remains unchanged un-
der permutation of the labels (k = 1, . . . K) of the
mixture components gk(∆ | mk). This makes the anal-
ysis of the posterior distributions challenging. However,
the EM algorithm does not guarantee convergence to the
global optimal weights and variances, especially in high-
dimensional problems. Furthermore, MCMC methods
would be able to provide much more complete informa-
tion on the posterior distributions. In our numerical ex-
periments, we did not find evidence of a label switching
problem due to employing the MCMC method. This is
most likely because, in our normal mixture models, the
means of the normal distributions are always specified
by the predictions of bias-corrected mass models, which
works as an identifiability constraint.

The quantity of interest in our study is the one-neutron
separation energy (Sn), which is directly relevant to the
r-process. This is because, in nucleosynthesis calcula-
tions (post-processing of hydrodynamical simulations),
photodissociation rates (denoted as λ(γ,n) below) are of-
ten calculated from the neutron capture rate via detailed
balance:

λ(γ,n) = 〈σv〉(n,γ) ·
G(N,Z) ·G(1, 0)

G(N + 1, Z)
·
(

A

A+ 1

)3/2

·
(
mukT

2πh̄2

)3/2

· exp

(
−Sn(N + 1, Z)

kT

)
, (8)

where 〈σv〉(n,γ) is the velocity-integrated neutron capture

cross section for a nucleus withN neutrons and Z protons
(A ≡ N + Z), G(N,Z) is the partition function for the
nucleus (N,Z), mu is the mass of a nucleon, and T is the
temperature of the environment. Note that the reverse
rate is exponentially dependent on Sn.

The mass models included in our ensembles are the
Duflo-Zucker mass model with 29 parameters (DZ29) [7],
FRDM2012 [2], HFB31 [10], KUTY05 [49], ETFSI2 [50],
and WS4 [6]. In most of our numerical experiments, we

take the Sn values from the AME2020 [20] as observa-
tions. In evaluating the quality of uncertainty estimates
for unseen data, we use the Sn values from AME2003 [51]
for constructing our models and then test them with the
new data points in AME2020. In the AME2020, 319 new
Sn data points with proton number Z = 16-105 are avail-
able compared to the AME2003. The new data points in
the AME2020 compared to the AME2003 are shown in
Figure 2.

We consider four different ways to categorize the Sn
data. The first category is the data for the whole chart
of nuclides, which employs all the available experimental
data at once. The second and third are data for each
isotopic and isotonic chain, respectively. This focuses
on the evolution of the Sn values as a function of proton
and neutron number (isotopic and isotonic, respectively).
The last is isobaric (equal mass number A), to demon-
strate that it is possible to create an EBMA model for
each isobaric chain, which is relevant to the trend of β−-
decay Q-values.

III. RESULTS AND DISCUSSION

A. Comparison with observations

To compare the predictions of the EBMA model with
the observations (data from AME2020), the nominal pre-
dictions of EBMA are taken as the MAP values of the
predictive distributions of Sn, with the bias-correction
parameters, weights, and standard deviations σk (Equa-
tion 3) also determined from the AME2020 values. Since
the AME2020 values are used both for fitting and evalu-
ation of the performance, this analysis reveals how well
the EBMA method can reproduce known experimental
data using the constituent mass models.

Figure 3 shows the deviations of the EBMA predic-
tions of the one-neutron separation energies (Sn) from
the AME2020 values. The root mean square error (σRMS)
shown in the figure is defined as

σRMS =

√√√√∑(n,p)

(
SAME
n,(n,p) − SEBMA

n,(n,p)

)2
NAME

, (9)

where (n, p) represents pairs of neutron number n and
proton number p of nuclei in the AME2020 whose Sn
values are used for the fit. NAME is the total number of
such nuclei (NAME ≡ ∑(n,p)). For the fit of the entire

chart of nuclides, NAME = 2030. This number is slightly
different in different fits, since some of the fits do not
converge at the edge of the chart. SAME

n,(n,p) and SEBMA
n,(n,p)

are the Sn values for a nucleus (n, p) from the AME2020
and EBMA models, respectively.

The value of σRMS of the fit of the whole chart of nu-
clides (panel (a)) shows that the averaged mass model
created by the EBMA method can reproduce the experi-

mental values slightly better (σ
(a)
RMSE = 0.232 MeV) than
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FIG. 4. Maximum a posteriori (MAP) values of the largest
weight in the EBMA ensemble determined for each (a) iso-
topic chain, (b) isotonic chain, and (c) isobaric chain.

the best performing model, which is the WS4 model [6]
with σWS4

RMSE = 0.257 MeV (see Table II). Further reduc-
tion in σRMSE is achieved when Sn of each isotopic chain
is fit separately (panel (b) of Figure 3). This suggests
that some models in the ensemble perform better than
the overall best-performing mass model (WS4) for some
isotopic chains. This can be verified by inspecting the
weights of the EBMA model and will be discussed in

more detail in Section III B. The best performance in
reproducing the experimental Sn is obtained when sepa-
rate EBMA models are optimized for each isotonic chain
(panel (c) of Figure 3). This means that the mass models
can capture the isotonic trends of Sn (Sn as functions of
neutron number N) much better than the isotopic trends
(Sn as functions of proton number Z), at least for the
available experimental data. This is most likely because
the values of Sn evolve rather smoothly as a function of
the proton number, compared to as a function of the neu-
tron number where odd-even staggering is present. The
fit of each isobaric chain resulted in the RMSE value of
0.171 MeV, which sits between the isotopic and isotonic
models (panel (d) of Figure 3).

B. Weights in the EBMA models

EBMA models are constructed using the Sn data from
AME2020 in three different ways: optimizing the EBMA
models with 1) the data for the whole chart of nuclides,
2) each isotopic chain, and 3) each isotonic chain, re-
spectively. Table II lists the 95 % posterior highest den-
sity intervals (HDIs) of the EBMA weights and variances,
which are the narrowest intervals that include 95 % of the
posterior distributions, when the EBMA model is opti-
mized with the observed Sn data for the whole chart of
nuclides. The posterior weight, which can be interpreted
as the probability of the model being the best one, is
the largest for the WS4 model, followed by DZ29 and
FRDM12. The order of the top three mass models is
the same as the order of the smallest root mean square
errors (RMSEs) with respect to the AME2020 [20]. On
the other hand, the standard deviations or variances of
the normal distributions in the mixture model do not
agree with the RMSE values. This is because the mixture
model is a weighted sum of the normal distributions and
is fitted to the data at once, not individually. It is not ap-
parent why the posterior weight of the HFB-31 model is
much smaller than the others, although the RMSE value
(0.472 MeV) is smaller than the KUTY05 (0.746 MeV)
and ETFSI2 (0.828 MeV) models. The HFB-31 mass
model performs relatively well on average in reproduc-
ing the observed data, but it is possible that the local
trend of the Sn values does not agree with the observa-
tion, therefore resulting in a small weight. Such local
disagreements could also explain the large interval of the
posterior standard deviation of the model (Table II).

The colors in Figure 4 show the mass model with
the largest weight within the ensemble for each iso-
topic (panel (a)), isotonic (panel (b)), and isobaric chain
(panel (c)). The color scale represents the value of the
weight. The weight is the posterior probability of the
mass model being the best one, based on the training
using the AME2020 data. Trends of the best models
in different regions are visible, especially when the en-
sembles are created for each isotopic chain. Note that
the current method cannot provide explanations for why
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FIG. 5. Trends of the sizes of 68% highest density intervals of the EBMA models, fitted with the AME2020 Sn data for (a) the
whole chart of nuclides, (b) each isotopic chain, (c) each isotonic chain, and (d) each isobaric chain. The charts with isotonic
and isobaric fits are truncated at a large neutron number and mass number, respectively, because there are not enough data
points within the chains to determine the EBMA parameters.

certain weights are large or small. Understanding the
weights would require a careful analysis of the relative
performance of each model.

C. Uncertainty quantification with EBMA

One of the main goals of this study is to quantify the
uncertainty of the theoretical values Sn when a variety
of mass models are available. EBMA estimates it by
creating a weighted average of a collection of mass mod-
els, based on the performance of each model during the

TABLE II. 95 % posterior highest density intervals (HDI) of
the EBMA weights and standard deviations (variances), fitted
with the AME2020 Sn values. The notation (a, b) denotes an
interval with a being the lower bound and b being the upper
bound, respectively. RMSE shows the root mean square error
of each mass model with respect to the AME2020 values.

Mass model Weight Standard deviation RMSE [MeV]
WS4 (0.392, 0.539) (0.186, 0.221) 0.257
DZ29 (0.154, 0.277) (0.134, 0.196) 0.292

FRDM12 (0.145, 0.264) (0.143, 0.196) 0.350
KUTY05 (0.021, 0.127) (0.134, 0.292) 0.746
ETFSI2 (0.001, 0.048) (0.063, 0.450) 0.828
HFB31 (0.000, 0.029) (0.138, 1.073) 0.472

training. In the EBMA model, predictive uncertainty in-
cludes not only the spread of the forecasts among the
members of the ensemble, but also takes into account
the weighted variance of each member model according
to the performance during the training [25]. The inter-
pretability of the uncertainty is another advantage of the
EBMA method.

1. Size of uncertainty estimates

Figure 5 shows the size of the 68% highest density in-
terval (HDI), which is roughly comparable to the ±1σ
interval of the normal distribution, with EBMA models
fitted for the whole chart of nuclides (panel (a)), each iso-
topic chain (panel (b)), each isotonic chain (panel (c)),
and each isobaric chain (panel (d)), respectively. The fit
is performed using the AME2020 data, and the predic-
tions are made for all the nuclei available in all the mem-
ber mass models within the ensemble. In all the cases, it
can be seen that the size of the uncertainty is constrained
where the data exist, but increases towards the edge of
the chart of nuclides, especially in the neutron-rich di-
rection. This reflects the fact that the predictions of the
mass models constituting the ensemble start to diverge
as we move further from the last data point, as shown in
Figure 1.

Comparing the four plots of Figure 5, the increase
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FIG. 6. Distributions of the new data points in AME2020 compared to AME2003, with respect to the 68% HDIs predicted by
the EBMA models fitted with the AME2003 data for (a) the whole chart of nuclides, (b) each isotopic chain, (c) each isotonic
chain, and (d) each isobaric chain.

in the size of uncertainty in the neutron-rich region is
the smallest for the fit using the whole chart of nuclides
(panel (a)). This is likely because the weights for the
whole chart of nuclides can be determined using all avail-
able data, whereas for each isotopic, isotonic, and isobaric
chain, the weights are determined only from the data in
each chain. Although the isotonic fit was best performing
in terms of reproducing the experimental data (Figure 3),
it can be seen from the panel (c) of Figure 5, the size of
uncertainty rapidly grows where experimental data do
not exist.

These results show that, in general, the current theo-
retical understanding and the accuracy of modeling of
nuclear masses become increasingly uncertain towards
the neutron-rich region. Therefore, in investigating the
impact of uncertain masses on the prediction of the r-
process observables, such an increase in the size of uncer-
tainty should be taken into account. Using the EBMA
uncertainty would allow for more realistic uncertainty
quantification and sensitivity studies of the r-process ob-

servables.

2. Quality of uncertainty estimates

As discussed in Section II B, the predictive uncertainty
given by the EBMA model has a straightforward inter-
pretation. Now, we investigate the quality of the estima-
tion of the size of uncertainty. We first construct EBMA
models and quantify the prediction uncertainties using
the data from the AME2003 [51], then evaluate the qual-
ity of the uncertainties based on the new data from the
AME2020 [20].

Figure 6 shows the distribution of the new Sn data
relative to the sizes of uncertainties given by the EBMA
models fitted with the data for the whole chart of nu-
clides (panel (a)), fitted for each isotopic chain (panel
(b)), isotonic chain (panel (c)), and isobaric chain (panel
(d)). The number of new data points included in the
fit (n in Figure 6) is not necessarily 319 for the iso-
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topic/isotonic/isobaric fits because at the edge of the
chart of nuclides, often there are not enough data points
in the isotopic/isotonic/isobaric chains and the posterior
weights do not converge. Such data points are excluded
from the fits. The size of the EBMA uncertainty is taken
as the 68% highest (posterior) density interval (HDI.68),
which is the narrowest 68% credible interval on the pos-
terior distribution. If the distribution is a perfect normal
distribution, 68% corresponds to the ±1σ interval sym-
metric about the mean. To study how the observation
distributes relatively to the HDI.68, we define δ, which
represents an observed Sn value normalized by the size
of HDI.68. Let hlow and hup represent the lower and up-
per boundaries of the HDI.68, respectively,

δ =
Sn − hlow
hup − hlow − 0.5, (10)

where 0.5 is subtracted to symmetrize the distribution
around 0.

Comparing the average sizes of the 68% intervals
(HDI.68), on average, the model fitted with the whole
chart of nuclides (panel (a) of Figure 6) provides the
most constrained size of the uncertainty of 0.48 MeV.
On the other hand, the models fitted for each isotopic
(panel (b)), isotonic (panel (c)), and isobaric (panel (d))
chain have larger credible intervals. This is most likely
due to the fewer observation data points in each iso-
topic, isotonic, or isobaric chain compared to the data
for the whole chart of nuclides. For the isotopic and iso-
tonic fits (panels (c) and (d)), some data points around
δ ∼ 2 can be seen, suggesting that the models opti-
mized for isotopic/isotonic chains may be more sensi-
tive to observations that do not follow the trend within
the isotopic/isotonic chain. This means that the iso-
topic/isotonic models may be used to detect anomalous
masses or separation energies with respect to the trend
within the isotopic/isotonic chain. Since most of the new
data points fall within the 68 % intervals, while the sizes
of the uncertainties are somewhat overestimated, it can
be concluded that the EBMA method is capable of ex-
trapolating the Sn values with conservative uncertainty
estimates, when the new data points are adjacent to the
existing data. The quantified uncertainties may also be
used to estimate the probabilities of certain nuclei to be
bound as in Refs. [29, 38, 52], which will be addressed in
future work.

IV. CONCLUSIONS

We have explored the possibility of quantifying the
uncertainty of theoretical one-neutron separation ener-
gies (Sn) when a variety of mass models are available,

using the Ensemble Baysian Model Averaging (EBMA)
method. The EBMA method models an ensemble of
bias-corrected mass models as a mixture of normal dis-
tributions, whose parameters are estimated by MCMC
using the No-U-Turn-Sampler (NUTS). EBMA models
have been constructed in four different ways of fitting,
namely, the whole chart of nuclides, each isotopic chain,
each isotonic chain, and each isobaric chain.

In reproducing the observed one-neutron separation
energies (Sn), in all cases, the maximum a posteriori
(MAP) estimates of the EBMA models result in smaller
root mean square deviations from the AME2020 data
than the best model in the ensemble, namely the WS4
model. While the EBMA model fitted for the whole chart
of nuclides results in a larger σRMS value than the iso-
topic/isotonic/isobaric fit, it provides a more constrained
and accurate uncertainty.

For all cases, the 68% HDIs estimated from AME2003
data contain roughly 95% of the new observations in
AME2020. This suggests that the extrapolations of the
Sn values provided by the current EBMA models based
on the AME2003 data and the six theoretical mass mod-
els work well for the new data in AME2020. Further-
more, based on the distributions of the new AME2020
data with respect to the size of the 68% HDIs, we con-
clude that the EBMA method provides meaningful but
conservative uncertainty estimates.

The advantage of the EBMA method is its simplic-
ity in obtaining the uncertainty estimates of an ensemble
of theoretical models. This would make it possible to
apply the current method to various nuclear physics ob-
servables. Using an ensemble of theoretical models can
also naturally model the fact that the predictions of nu-
clear physics models are not well constrained far from
stability, especially in the neutron-rich region. Such re-
alistic uncertainty estimates are necessary to accurately
assess the impact of uncertain nuclear physics inputs in
the studies of heavy element nucleosynthesis, especially
the r-process.
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