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Atomic masses are a foundational quantity in our understanding of nuclear structure, astrophysics
and fundamental symmetries. The long-standing goal of creating a predictive global model for
the binding energy of a nucleus remains a significant challenge, however, and prompts the need
for precise measurements of atomic masses to serve as anchor points for model developments. We
present precise mass measurements of neutron-rich Ru and Pd isotopes performed at the Californium
Rare Isotope Breeder Upgrade facility at Argonne National Laboratory using the Canadian Penning
Trap mass spectrometer. The masses of 108Ru, 110Ru and 116Pd were measured to a relative mass
precision δm/m ≈ 10−8 via the phase-imaging ion-cyclotron-resonance technique, and represent an
improvement of approximately an order of magnitude over previous measurements. These mass
data were used in conjunction with the physically interpretable machine learning (PIML) model,
which uses a mixture density neural network to model mass excesses via a mixture of Gaussian
distributions. The effects of our new mass data on a Bayesian-updating of a PIML model are
presented.

I. INTRODUCTION

The mass of an isotope is a critically important nuclear
observable for our understanding of the structure of a nu-
cleus, reactions in stellar environments, and fundamen-
tal interactions [1]. As such, a predictive model of the
atomic mass has been a long-standing aim of the nuclear
physics community, with the ultimate goal of determin-
ing the masses of exotic nuclei very far from the valley of
stability. Conventional mass models are optimized on all
available experimental mass measurements [2] to find the
best set of descriptive parameters, which are used to ex-
trapolate masses of unmeasured nuclei. While most mass
models well-describe experimental data, with deviations
commonly on the order of 100 keV [3–5] they diverge
(on the order of 1 MeV) from each other quickly outside
the realm of available data. These deviations motivate
the need for further mass measurements of nuclei; both
those which remain unmeasured and those that can be
measured more precisely and accurately.
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While the need for high-precision mass measurements
is well established, future developments and innovations
are still warranted in the realm of mass models. Given
the impossibility of solving the complex, many-body
Hamiltonian for all nuclei, models make approximations
to allow for computational feasibility. The result is of-
ten a fixed model with the focus on the optimization
of specific parameters, which provides a limited search
into the plethora of potential correlations between nuclei
across the nuclear chart. Recently, a different approach
has been taken, where the model itself is no longer fixed
but rather optimized by using machine learning (ML)
techniques [6–9] with a neural network. This allows for a
more wide-reaching, robust search of mass correlations,
which could potentially shed light on new physical struc-
ture hidden in the unprobed mass surface. Previous work
has shown such techniques can well-describe the nuclear
mass, both using solely mass excess data [10] and when
paired with a chosen physical constraint [11–13]. While
these efforts, alongside a wealth of other ML modeling
approaches, have been successful, there remains a wide
space of mass correlations to explore with much promise.
Similarly to their fixed model counterparts, ML mod-
els require precise experimental measurement of nuclear
masses to improve their ability to model existing data
and test their predictive capabilities.

In this paper, we present precision mass measure-
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ments of 108Ru, 110Ru and 116Pd with the Canadian Pen-
ning Trap (CPT) using radioactive beams from the Cal-
ifornium Rare Isotope Breeder Upgrade (CARIBU) at
Argonne National Laboratory (ANL). All masses were
measured to a relative mass precision δm/m ≈ 10−8

using the Phase-Imaging Ion-Cyclotron-Resonance (PI-
ICR) technique, and represent an improvement in preci-
sion of approximately an order of magnitude over pre-
vious results which employed the Time-of-Flight Ion-
Cyclotron-Resonance (ToF-ICR) technique [1, 14]. These
masses were used in the training of the Physically Inter-
pretable Machine Learning (PIML) model, which uses a
Mixture Density Network (MDN) approach to determine
mass excesses via a admixture of Gaussians.

II. EXPERIMENT

Ru and Pd mass measurements were performed using
the CPT housed at ANL [15] and coupled to the CARIBU
facility [16]. The radioactive beams of interest were pro-
duced by the spontaneous fission of a 252Cf source of an
effective strength of approximately 0.5 Ci. Fission frag-
ments are collected by a large-volume gas catcher [17],
where they thermalize via collisions with high-purity He
gas. Pd and Ru isotopes exit the gas catcher as ions
with a charge state of q = 1, and are delivered to a high-
resolution isobar separator [18], which selects a unique
A/q, where A is the mass number, via two bending mag-
nets.

Isobaric beams progress into the radio-frequency
quadrupole (RFQ) cooler-buncher, which cools beams
via collisions with a He buffer gas at ≈ 10−4 torr and
bunches beams via collection in a time-varying poten-
tial well. Cooled ion bunches, which include the Pd
and Ru isotopes of interest (IOIs), are ejected and de-
livered to the multiple-reflection time-of-flight mass sep-
arator (MR-ToF-MS) [19], which separates ions via their
unique time-of-flight over a given path and kinetic energy
[20]. After undergoing between 580 to 850 isochronous
turns between electrostatic mirrors, ions are ejected and
a unique time-of-flight range is selected via a Bradbury-
Nielson gate. The MR-ToF-MS, with a mass resolving
power of approximately 105, delivers highly selective ion
bunches of Pd and Ru isotopes to a linear Paul trap for
further cooling and accumulation before injection into
the Penning trap.

Masses of ions are determined via their cyclotron fre-
quency (νc) in a magnetic field. The CPT is a hyperbolic
Penning trap consisting of the standard hyperbolic ring
and endcap electrodes, with additional correction ring
and tube electrodes, all housed within a ≈ 6 T magnetic
field. Ionic motion inside a Penning trap can be decom-
posed into three eigenmotions with frequencies ν+, ν−
and νz. νc, to first approximation given as the sum of the
radial components ν+ and ν− [21], is determined via the
PI-ICR technique [22], where the motional phases of ions
within the trap are projected onto a position-sensitive

microchannel plate (PS-MCP) detector [23].
The cyclotron frequency is determined via a reference

phase measurement and a final phase measurement. In
both, the IOI is injected into the Penning trap from the
linear Paul trap, where they are centered via the appli-
cation of a dipole radiofrequency (RF) pulse of frequency
ν− and excited to a radius by the application of a dipole
RF pulse of frequency ν+. In a reference phase measure-
ment, a quadrupole RF pulse at νc is applied immediately
after the ν+ pulse. In a final phase measurement, the νc
pulse is delayed by a time tacc, such that the ions acquire
a mass-dependent phase during this so-called accumula-
tion time. In both cases, the ions are ejected into a drift
tube before detection via a PS-MCP. The cyclotron fre-
quency is given by the difference in phases between these
measurements, such that:

νc =
∆ϕ

2πtacc
=

ϕf − ϕi + 2πn(tacc)

2πtacc
(1)

where n(tacc) is the number of full revolutions under-
gone by the ion in time tacc, ϕf and ϕi are the final and
reference phases, respectively. A measurement of a well-
known mass of the same A/q at high statistics is used
to calibrate the magnetic field strength, and the ratio
R = νc,IOI/νc,cal between the IOI and the calibrant was
used to determine the Pd and Ru masses. More informa-
tion on the employed measurement scheme can be found
in [24].

III. ANALYSIS

In order to determine ϕf and ϕi, the positional centers
of the spots resulting from ion detection at the PS-MCP
must be obtained. This is accomplished by fitting Gaus-
sians to all data points assigned to a given spot. Spot
assignment is determined via data clustering using the
mean shift algorithm [25], similar to that of [26, 27]. An
example of a result of the clustering algorithm is shown
in Fig. 1. Two one-dimensional (1D) Gaussians are fit
to clusters using a maximum likelihood estimator, and
the mean and standard deviation are taken as the spot
center and uncertainty in position space.
A number of systematic effects must be accounted for

during the data-taking and analysis process. First, the
presence of initial magnetron motion of the ions upon in-
jection into the Penning trap results in an extra oscilla-
tory component after excitation to the revolution radius.
This manifests as a sinusoidal dependence of ϕf , and sub-
sequently the cyclotron frequency, on the accumulation
time, with a period determined by the trap’s character-
istic ν−. To fully characterize this motion, data is taken
at various tacc within a ≈ 1 ms window to encompass a
period of magnetron motion, and a three parameter si-
nusoidal model, described in [24], is fitted to extract the
true cyclotron frequency (νc). An example of a fitted
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FIG. 1. A plot of counts of 110Ru isotopes detected during a
PI-ICR measurement with accumulation time tacc = 450.432
ms.

sinusoid and the associated cyclotron frequency data is
presented in Fig. 2.

Second, the presence of multiple species in the trap
results in the reference phase being an amalgamation of
the slightly different phases acquired by each ionic species
during excitation. To properly determine the phase dif-
ference for a given isotope, the reference phase is shifted
to account for the different populations of species present
in a spectrum. This process is described in greater detail
in [24].

Small imperfections in the alignment of the ejection op-
tics with the solenoidal magnetic field result in an ellipse-
shaped orbital projection on the PS-MCP. To minimize
the effects of these distortions, all reference and final
phase measurements are taken within 10◦ of each other.
Any temporal instabilities in the magnetic field are ac-
counted for by measuring calibrant isotopes close in time
to IOI measurements.

Additional systematics, such as ion-ion interactions,
magnetic field imperfections and electric field instabili-
ties, have been determined to have a resulting uncertainty
of 4.0× 10−9 [28]; this has been added in quadrature.

In total, one Pd mass and two Ru masses were mea-
sured with the CPT. At each mass unit, IOIs and other
beam species were identified by taking data at a series
of accumulation times between 5 ms to 100 ms. Once
species are identified, measurements of the IOI are taken
at a number of accumulation times around ≈ 450 ms,
within a window of ≈ 1 ms. Accumulation times were
carefully chosen such that contaminant species spots did
not overlap with the Pd or Ru spot. When necessary,
data when more than five ions were present in the trap
simultaneously were discarded to minimize effects due to
ion-ion interactions. Sufficient data was taken to achieve

FIG. 2. A plot of measured νc values for 110Ru at various
accumulation times spanning 450.024 and 450.704 ms. Blue
circles represent νc values, and the red dashes represent the
best fit sine curve. νc and the associated 1σ uncertainty are
shown by the black line and surrounding grey band.

≈ 2 mHz uncertainty on relevant cyclotron frequencies.

IV. RESULTS

Table I reports the mass excesses of all isotopes mea-
sured in this work, as well their mass excesses as found
in literature. The suggested literature values from
AME2020 are entirely derived from previous measure-
ments at JYFLTRAP at the University of Jyväskylä [14].
These measurements were made to an uncertainty of just
under 10 keV using the ToF-ICR technique [1]. Our data
are in good agreement with these earlier results, and rep-
resent an improvement in uncertainty by approximately
an order of magnitude, demonstrating the increased pre-
cision attainable with the PI-ICR technique.
The measured Ru and Pd mass excesses were used in

the training of the PIML model, which uses a MDN [30]
to map input data to an admixture of Gaussian distri-
butions. This effectively accounts for the probabilistic
nature of the input experimental data, and results in
posterior distributions for the outputs. Previous stud-
ies have shown that an expanded feature space provides
for better mass predictions and overall model conver-
gence [10]. With this in mind, our chosen physics-based
feature space consists of nine total features as in [12]:
proton number (Z), neutron number (N), mass num-
ber (A), measures of the odd-even pairing effects due
to protons (Zeo), neutrons (Neo) and all nucleons (Aeo),
the number of valence protons (Vp) and neutrons (Vn),
and a measure of the proton-neutron isospin asymme-
try (Pasym = N−Z

A ). All features are functions solely
of N and Z. Input training data is a hybrid mixture of
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TABLE I. Results of the mass measurements performed, compared to the literature values recommended by AME2020 [29].
Included is the frequency ratio (νc,IOI/νc,ref) between the ionic masses of the ion of interest (IOI) and the reference ion for all
measurements. Differences are mnew −mlit. All mass values are in keV.

Nuclide Mass Excess Literature Difference Reference Ion Frequency Ratio

108Ru+ -83659.9 (12) -83661(9) 1.1 (88) 108Pd+ 0.999 941 658 355 (403)
110Ru+ -80072.83(77) -80073(9) 0.17(900) 110Pd+ 0.999 919 342 130 (391)
116Pd+ -79833.04(81) -79831(7) -2.0 (72) 116Cd+ 0.999 917 762 315 (738)

randomly-selected experimental data from AME2020 [29]
and theoretical model data from FRDM2012 [5], WS4 [4]
and DZ33 [2]. We employ a network of six hidden layers
and ten hidden nodes per layer with an Adam optimizer
with learning rate 0.0002 [31] and a weight-decay regu-
larization of 0.01. In line with previous studies [10], net-
work complexity was minimized while maintaining good
agreement between training set data and resulting model
predictions. Training occurs via the minimization of two
independent log-likelihood loss functions: L1 which con-
tains information on the input hybrid mass excess data,
and L2 which help constrain model results to follow the
Garvey-Kelson (GK) relations, presented in detail in [32].
This additional physics-based constraint has been shown
to aid significantly in the improvement of model fitting
results. The total loss function is given as:

Ltotal = L1 + λphysL2 (2)

where λphys is an additional tunable hyperparameter that
controls the constraining power of the GK relations in a
given model fit. In line with previous findings in [12], we
use λphys = 1.0. We conclude the training process via
a cross-validation method with the experimental mass
values, which halts training when the associated cross-
validation loss has increased for a long period of time
without any decrease in Ltotal.

Mass excess results for Ru masses from two different
PIML models are presented alongside experimental val-
ues as reported in AME2020 in Fig. 3. Each model is
trained with the same hybrid set of randomly selected
masses from AME2020 [29], the masses of 108Ru, 110Ru
and 116Pd, and the three employed mass models with
one difference; the PIMLCPT model uses the three mass
values for 108Ru, 110Ru, and 116Pd from this work while
the PIML model uses the mass values from AME2020.
This technique, a Bayesian update of a ML model with
new information, enables unique studies of the effects of
individual mass results on both local and global model
trends. Both models provide an excellent fit globally
to AME mass data, with σRMS,PIML = 0.380 MeV and
σRMS,PIML-CPT = 0.324 MeV. A notable difference in
the mass trends is apparent between the two models for
the Ru masses; while both models do similarly well in
modeling masses closer to stability, the PIMLCPT model
appears to match more closely the trends of the neutron-

FIG. 3. A plot comparing two different PIML model mass
results and mass values from AME2020[29] for Ru isotopes
(Z = 44). Blue squares represent the PIML model and red
circles the PIMLCPT model, with the different shaded bands
representing the 1σ, 2σ and 3σ uncertainties. Black triangles
and error bars represent mass values and 1σ uncertainties
from [29]. Stars indicate masses that were used as part of the
training dataset.

deficient end of the isotope chain. A similar such behav-
ior is seen in the Pd masses.

An alternative visualization of the results from the two
models is presented in Fig. 4, which shows the difference
between each of the models’ results and AME2020 [29]
for the Ru isotopes. Of note, the mass prediction for
108Ru (N = 64) is improved for the PIMLCPT model
such that the AME2020 mass and PIMLCPT mass are
consistent within 1σ. There is no statistically significant
improvement for 110Ru (N = 66), as the PIML model
already well-predicted the AME mass.

These calculations highlight the importance of well-
measured masses and the significance they can have on
the extrapolative behavior of global ML mass models.
Further mass measurements, both more exotic and pre-
cise, will enable even further constraint of global nuclear
mass models.
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FIG. 4. A plot showing the difference between two different
PIML model mass results and mass values from AME2020[29]
for the Ru (Z = 44) isotopes. Blue squares represent the
PIML model and red circles the PIMLCPT model. Error
bars represent the 1σ uncertainties from the respective PIML
model.

V. SUMMARY

Measurements of neutron-rich Ru and Pd isotopes were
performed at the CARIBU facility at ANL using the
Canadian Penning Trap. All mass measurements rep-
resent an improvement in precision of approximately an
order of magnitude over earlier results, demonstrating
the precision capabilities of the PI-ICR technique over

previously existing techniques. These data were used in
the training of PIML models, which enables mass ex-
cess modeling via a mixture density neural network. The
results demonstrate the significant effect a small num-
ber of precise mass data can have on resulting trends in
the mass surface. Further precise mass measurements,
alongside developments in machine learning approaches,
are ultimately needed to improve our nuclear mass inter-
polative and predictive capabilities.
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mass measurements of neutron-rich Tc, Ru, Rh, and Pd
isotopes, Physical Review C 75, 64302 (2007).

[15] G. Savard, R. C. Barber, C. Boudreau, F. Buchinger,
J. Caggiano, J. Clark, J. E. Crawford, H. Fukutani,
S. Gulick, J. C. Hardy, A. Heinz, J. K. P. Lee, R. B.
Moore, K. S. Sharma, J. Schwartz, D. Seweryniak, G. D.
Sprouse, and J. Vaz, The Canadian Penning Trap Spec-
trometer at Argonne, Hyperfine Interactions 132, 221
(2001).

[16] G. Savard, S. Baker, C. Davids, A. F. Levand, E. F.
Moore, R. C. Pardo, R. Vondrasek, B. J. Zabransky, and
G. Zinkann, Radioactive beams from gas catchers: The
CARIBU facility, Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Ma-
terials and Atoms 266, 4086 (2008).

[17] G. Savard, J. Clark, C. Boudreau, F. Buchinger, J. E.
Crawford, H. Geissel, J. P. Greene, S. Gulick, A. Heinz,
J. K. Lee, A. Levand, M. Maier, G. Münzenberg,
C. Scheidenberger, D. Seweryniak, K. S. Sharma,
G. Sprouse, J. Vaz, J. C. Wang, B. J. Zabransky, and
Z. Zhou, Development and operation of gas catchers to
thermalize fusion–evaporation and fragmentation prod-
ucts, Nuclear Instruments and Methods in Physics Re-
search Section B: Beam Interactions with Materials and
Atoms 204, 582 (2003).

[18] C. N. Davids and D. Peterson, A compact high-resolution
isobar separator for the CARIBU project, Nuclear Instru-
ments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms 266, 4449 (2008).

[19] T. Y. Hirsh, N. Paul, M. Burkey, A. Aprahamian,
F. Buchinger, S. Caldwell, J. A. Clark, A. F. Levand,
L. L. Ying, S. T. Marley, G. E. Morgan, A. Nystrom,
R. Orford, A. P. Galván, J. Rohrer, G. Savard, K. S.
Sharma, and K. Siegl, First operation and mass separa-
tion with the CARIBU MR-TOF, Nuclear Instruments
and Methods in Physics Research Section B: Beam In-
teractions with Materials and Atoms 376, 229 (2016).

[20] M. Yavor, Chapter 8 Time-of-Flight Mass Analyzers
(2009).

[21] L. S. Brown and G. Gabrielse, Geonium theory: Physics
of a single electron or ion in a Penning trap, Rev. Mod.
Phys. 58, 233 (1986).

[22] S. Eliseev, K. Blaum, M. Block, C. Droese, M. Gon-
charov, E. Minaya Ramirez, D. A. Nesterenko, Y. N.
Novikov, and L. Schweikhard, Phase-imaging ion-
cyclotron-resonance measurements for short-lived nu-
clides, Physical Review Letters 110, 1 (2013).

[23] O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spiel-
berger, U. Spillmann, R. Doerner, and H. Schmidt-
Boecking, A broad-application microchannel-plate detec-
tor system for advanced particle or photon detection
tasks: large area imaging, precise multi-hit timing in-
formation and high detection rate, Nuclear Instruments
and Methods in Physics Research Section A, Acceler-
ators, Spectrometers, Detectors and Associated Equip-
ment 477, 244.

[24] R. Orford, J. A. Clark, G. Savard, A. Aprahamian,
F. Buchinger, M. T. Burkey, D. A. Gorelov, J. W. Klimes,
G. E. Morgan, A. Nystrom, W. S. Porter, D. Ray, and
K. S. Sharma, Improving the measurement sensitivity of
the Canadian Penning Trap mass spectrometer through
PI-ICR, Nuclear Instruments and Methods in Physics
Research, Section B: Beam Interactions with Materials
and Atoms 463, 491 (2020).

[25] D. Comaniciu and P. Meer, Mean shift: a robust ap-
proach toward feature space analysis, IEEE Transactions
on Pattern Analysis and Machine Intelligence 24, 603
(2002).

[26] R. Orford, F. G. Kondev, G. Savard, J. A. Clark, W. S.
Porter, D. Ray, F. Buchinger, M. T. Burkey, D. A.
Gorelov, D. J. Hartley, J. W. Klimes, K. S. Sharma, A. A.
Valverde, and X. L. Yan, Spin-trap isomers in deformed,
odd-odd nuclei in the light rare-earth region nearN = 98,
Physical Review C 102, 11303 (2020).

[27] R. Orford, N. Vassh, J. A. Clark, G. C. McLaugh-
lin, M. R. Mumpower, D. Ray, G. Savard, R. Surman,
F. Buchinger, D. P. Burdette, M. T. Burkey, D. A.
Gorelov, J. W. Klimes, W. S. Porter, K. S. Sharma, A. A.
Valverde, L. Varriano, and X. L. Yan, Searching for the
origin of the rare-earth peak with precision mass mea-
surements across Ce–Eu isotopic chains, Physical Review
C 105, L052802 (2022).

[28] D. Ray, A. A. Valverde, M. Brodeur, F. Buchinger,
J. A. Clark, B. Liu, G. E. Morgan, R. Orford, W. S.
Porter, G. Savard, K. S. Sharma, and X. L. Yan,
Phase-imaging ion-cyclotron-resonance mass spectrom-
etry with the canadian penning trap at caribu (2024),
arXiv:2407.13802 [physics.ins-det].

[29] M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi,
The AME 2020 atomic mass evaluation (II). Tables,
graphs and references*, Chinese Physics C 45, 030003
(2021).

[30] C. M. Bishop, Mixture density networks (1994).
[31] D. P. Kingma and J. Ba, Adam: A method for stochastic

optimization, CoRR abs/1412.6980 (2014).
[32] G. T. GARVEY, W. J. GERACE, R. L. JAFFE,

I. TALMI, and I. KELSON, Set of Nuclear-Mass Rela-
tions and a Resultant Mass Table, Reviews of Modern
Physics 41, S1 (1969).

https://doi.org/10.3389/fphy.2023.1198572
https://doi.org/10.1016/J.PHYSLETB.2023.138385
https://doi.org/10.1103/PhysRevC.75.064302
https://doi.org/10.1023/A:1011986930931
https://doi.org/10.1023/A:1011986930931
https://doi.org/10.1016/J.NIMB.2008.05.091
https://doi.org/10.1016/J.NIMB.2008.05.091
https://doi.org/10.1016/J.NIMB.2008.05.091
https://doi.org/10.1016/S0168-583X(02)02134-1
https://doi.org/10.1016/S0168-583X(02)02134-1
https://doi.org/10.1016/S0168-583X(02)02134-1
https://doi.org/10.1016/J.NIMB.2008.05.148
https://doi.org/10.1016/J.NIMB.2008.05.148
https://doi.org/10.1016/J.NIMB.2008.05.148
https://doi.org/10.1016/J.NIMB.2015.12.037
https://doi.org/10.1016/J.NIMB.2015.12.037
https://doi.org/10.1016/J.NIMB.2015.12.037
https://doi.org/10.1016/S1076-5670(09)01608-5
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/RevModPhys.58.233
https://doi.org/10.1103/PhysRevLett.110.082501
http://inis.iaea.org/search/search.aspx?orig_q=RN:34001189
http://inis.iaea.org/search/search.aspx?orig_q=RN:34001189
http://inis.iaea.org/search/search.aspx?orig_q=RN:34001189
http://inis.iaea.org/search/search.aspx?orig_q=RN:34001189
https://doi.org/10.1016/j.nimb.2019.04.016
https://doi.org/10.1016/j.nimb.2019.04.016
https://doi.org/10.1016/j.nimb.2019.04.016
https://doi.org/10.1109/34.1000236
https://doi.org/10.1109/34.1000236
https://doi.org/10.1109/34.1000236
https://doi.org/10.1103/PhysRevC.102.011303
https://doi.org/10.1103/PhysRevC.105.L052802
https://doi.org/10.1103/PhysRevC.105.L052802
https://arxiv.org/abs/2407.13802
https://arxiv.org/abs/2407.13802
https://arxiv.org/abs/2407.13802
https://doi.org/10.1088/1674-1137/abddaf
https://doi.org/10.1088/1674-1137/abddaf
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1103/RevModPhys.41.S1
https://doi.org/10.1103/RevModPhys.41.S1

	Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling
	Abstract
	Introduction
	Experiment
	Analysis
	Results
	Summary
	Acknowledgments
	References


