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We present an approach to modeling the ground-state mass of atomic nuclei based directly on a probabilistic
neural network constrained by relevant physics. Our physically interpretable machine learning (PIML) approach
incorporates knowledge of physics by using a physically motivated feature space in addition to a soft physics
constraint that is implemented as a penalty to the loss function. We train our PIML model on a random set of
approximately 20% of the atomic mass evaluation (AME) and predict the remaining 80%. The success of our
methodology is exhibited by a σrms ≈ 186 keV match to data for the training set and σrms ≈ 316 keV for the
entire AME with Z � 20. We show that our general methodology can be interpreted using feature importance.
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Introduction. The minimal energy required to break up a
nucleus into its constituent nucleons is one of the fundamen-
tal properties of an atomic nucleus. This quantity, which is
equivalent to the mass, features prominently as an input for
the theoretical prediction of a number of nuclear properties
which are important for both scientific and technological ap-
plications [1–3]. This effect is perhaps most apparent in the
important role that masses play in predicting the reaction and
decay properties of atomic nuclei [4,5]. Masses also serve
as critical inputs for the study of astrophysical phenomena
from influencing the composition of neutron star crusts to im-
pacting heavy element synthesis and its potential observable
consequences [6–10].

The many-body Hamiltonian that describes atomic nu-
clei is exceedingly complex and remains unknown, therefore,
the lowest-energy state cannot be calculated directly from
first principles for heavy nuclei. This state of affairs has
led to the development of many theoretical descriptions
of atomic masses, including semiclassical approaches [11],
microscopic approaches [12], and more recently, models en-
hanced by considering improvements to model discrepancies
with data [13,14]. An inherent limitation in contemporary
modeling is that the model itself remains fixed with opti-
mization focused on parameters. This can be overcome with
application of machine learning (ML) algorithms in which the
model itself is optimized [15].

*mumpower@lanl.gov; https://www.matthewmumpower.com.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

A wide range of approaches that utilize ML methods have
been adopted by the nuclear physics community over the
past several years [16]. Artificial neural networks have shown
great promise as an extrapolation tool for ab initio nuclear
theory of light nuclei [17,18]. Physics-informed ML using
Bayesian techniques, such as maximum entropy have been
used to inform the inverse of the Laplace transform required
by electroweak response functions [19]. Finite-size effects
in many-body physics have utilized neural networks to ex-
trapolate the unitary gas to the thermodynamic limit at zero
range [20]. Future applications, particularly, with artificial
intelligence methods, such as natural language processing,
will provide enormous assistance, notably with the extraction
of key information and correction of compilation errors [21]
in nuclear data evaluations [22].

Neural networks have also been used to study ground-state
mass predictions. To date the most common application of ML
methods to masses involve performing corrections to existing
theoretical approaches [13,23–26]. These methods focus on
training with residuals rather than directly with data. This
results in a correction function which may be used to improve
the match to existing data and may also be used for extrapola-
tion [27]. Direct predictions of masses with a neutral networks
are also beginning to be explored in the literature [28]. This
includes a recent method that seeks to predict masses with a
double network architecture [29]; the first network predicts
the mass, and the second network performs error correction.
Another use of ML mass predictions in the literature involves
calculating relevant Q values for nuclear reactions [30]. The
continual accumulation of accurate nuclear data will further
empower these methods [31].

In this Letter we present an approach to modeling masses
directly from a ML model constrained by physics. Our “phys-
ically interpretable machine learning” or (PIML) approach
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builds physically meaningful feature spaces and applies soft
constraints to ensure relevant physics is being obeyed. In
contrast to all existing work, we show for the first time that
an ML-based model utilizing a soft constraint is capable of
learning masses without reference to any underlying theo-
retical model. Aside from raw nuclear data, we only posit
relevant physical input features and the existence of major
shell closures. Our methodology can be generalized to any
problem in which physical constraints may need to be applied
to a machine learned model. In a drastic improvement to our
previous work [32], we train a probabilistic network on a frac-
tion of available data and predict the vast majority of masses
for thousands of nuclear species measured to date. We achieve
outstanding model accuracy and retain predictive power when
extrapolating. We show that our model can be interpreted
using a standard measure for feature importance, and this
interpretation fits within the context of the well-established
picture of atomic nuclei.

Methods. We use a probabilistic ML technique, the mixture
density network (MDN) [33]. Our probabilistic network is
built on the PYTORCH [34] framework and can be run on
either CPU or GPU architectures. This type of modeling has
been shown to be successful in describing nuclear properties
whereas providing well-quantified uncertainties even for com-
plex quantities, such as fission distributions [35].

Lovell et al. [32] reported that a combination of macro-
scopic and microscopic features is suitable for describing
masses across the chart of nuclides. Based on this previous
analysis, we use eight features: the proton number (Z), the
neutron number (N), the mass number (A), the odd-even na-
ture of protons (Zeo), the odd-even nature of neutrons (Neo),
the valence number of protons as measured from the nearest
closed shell (Vp), the valence number of neutrons as measured
from the nearest closed shell (Vn), and a measure of isospin
asymmetry (Pasym = N−Z

A ).
The last five features inform the model on quantum-

mechanical effects. Pairing effects manifest from the inclusion
of the Zeo and Neo terms which are binary, taking the value of
0 or 1. Valence terms characterize the counting of particles (or
holes) between major closed neutron and proton shells. As the
valence number increases up to the midshell, more complex
excitations, including collective modes may appear [36]. The
success of this picture can be related to nuclear promiscuity
(a measure of the strength of proton-neutron interactions per
valence nucleon) [37]. The final feature informs the model
about the Pauli exclusion principle.

We take as our training set a random selection of the
masses of 450 nuclei in the atomic mass evaluation 2016
(AME2016) [38] with Z � 20. The same set of 450 nuclei
is fixed throughout training and does not change. The match
to this data is computed with a logarithm loss function that we
denote by L1 (see Ref. [32]).

In addition to the physics-based feature space, we seek
to encode physical constraints into model training. For
this Letter, we chose to employ one such possibility, the
Garvey-Kelson (GK) relations [39]. This well-known series
of formulas involves a judicious choice of mass differences
of neighboring nuclei that minimizes the interactions be-
tween nucleons to first order, resulting in particular linear

combinations that strategically sum to zero. In this Letter we
consider the following GK relations. If N � Z , we minimize
the mass difference,

M(Z − 2, N + 2) − M(Z, N ) + M(Z − 1, N )

− M(Z − 2, N + 1) + M(Z, N + 1)

− M(Z − 1, N + 2) ≈ 0, (1)

and for N < Z ,

M(Z + 2, N − 2) − M(Z, N ) + M(Z, N − 1)

− M(Z + 1, N − 2) + M(Z + 1, N )

− M(Z + 2, N − 1) ≈ 0, (2)

as in Ref. [40].
We implement these two equations as a soft constraint, a

second loss function L2 in our training. This additional loss
function is calculated using only the mass predictions of the
ML model; no experimental data enter into the calculation of
L2. The value of L2 is obtained by calculating the absolute
value of the total sum of the GK relations for each nucleus
in the set that defines the AME. This loss serves as a penalty
for model solutions that do not obey well-established physical
law. We, therefore, seek parameter spaces that minimize the
value of L2 in the multiobjective optimization procedure that
follows. Note that because our implementation is enacted as a
soft constraint, training may ensue that temporarily increases
L2 in pursuit of the global minimum. We revisit this important
point shortly.

The model hyperparameters are as follows: The number of
hidden layers is six, the number of hidden nodes is eight, the
number of Gaussian ad mixtures is one (as mass is a scalar
quantity), the weight of the physics constraint is λphys = 1,
and we implement the Adam optimizer with learning rate
0.0002 [41]. To avoid overfitting, we implement regularization
with a weight decay set to 0.01. These hyperparameters were
determined from a select set of runs where the values were
varied.

The weight of the physics constraint, λphys = 1 is espe-
cially noteworthy. We found that if the physics constraint was
weighted too heavily (large values of λphys), training often
failed as sharp cusps were encountered in the evolution of
the total loss function which was prohibitive to optimization.
As λphys tends to zero, the physics constraint becomes less
influential on training and we return to the previous results of
Ref. [32].

In training we seek to minimize the total logarithm loss
that consists of a sum of the loss for the match to our training
set as well as the physical constraint: Ltotal = L1 + λphysL2.
Each training epoch attempts to improve the total logarithm
loss function with respect to previous solutions. We allow this
process to continue for roughly 107 epochs.

The logarithm losses for a sample training run used in this
Letter is shown in Fig. 1. The loss with respect to data L1

decreases monotonically by virtue of the minimization algo-
rithm. The loss with respect to physics L2, however, exhibits a
complex and highly nonlinear structure. This results in a total
loss function that displays similarly complex behavior, e.g.,
briefly rising (ca. epoch no. 105), before establishing a global
minimum for the entire run.
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FIG. 1. The logarithm loss as a function of training epoch for
the match to data L1 physics constraint L2, and the sum of the two
Ltotal = L1 + λphysL2. The learning rate is 0.0002.

Figure 1 demonstrates this very general but often
overlooked attribute of optimization with multiple con-
straints [42,43]. If we consider epoch numbers ≈1–8 × 105,
for example, we clearly see that whereas training based on
fit to data alone is generally quite good (and improving), the
same fit’s ability to satisfy basic physical requirements is quite
poor by comparison. Global minima across all epochs, e.g.,
in the case of a different training set, may not necessarily
be the final epoch at which a stop condition is reached (al-
though the two points do coincide by happenstance in Fig. 1).
Consequently, it is important that past work that has applied
ML in physics without implementing or considering physically
motivated constraints should be approached with caution.

Results. In Fig. 2, we compare the PIML model predictions
(blue) against our training data (AME2016 atomic masses)
over a range of neodymium isotopes with existing measured
data. The entirety of the AME dataset lies within the 3σ uncer-
tainty interval with a majority (all but ≈ 3) data points lying
within a 1σ or 2σ interval. The overall excellent agreement
with AME data shown here is indicative of the results across
the entire chart of nuclides. We report a root-mean-square
error σrms for the PIML model to be σrms ≈ 186 keV for the
training set (20% coverage of AME2016 data) and σrms ≈ 316
keV for the entirety of AME2016 with Z � 20. We retain our
predictive capability (σrms ≈ 336 keV) when comparing to the
latest 2020 release of the evaluation [44]. These results are
competitive with global mass models available today.

The green shaded band in Fig. 2 indicates model variations
in training without inclusion of the GK relations. The upper
and lower values of this band are calculated from the maxi-
mum and minimum of the mean values of the predictions of
our previous models (M6, M8, M10, and M12) [32]. Whereas
the green band captures the general trend in masses along
this isotopic chain, training with the GK relations (this Letter,
blue) enables a more refined prediction of features found in
the mass surface. The difference shown for this isotopic chain
is representative of other isotopic chains across the chart of

FIG. 2. Predictions of masses along the neodymium (Z = 60)
isotopic chain using our PIML model. The PIML average and 1–3σ

uncertainties are shown in progressively lighter shading along with
AME2016 [38] and recent data from Ref. [45]. Nuclei used for train-
ing indicated by stars. Masses are plotted relative to FRDM2012.
Also shown is a range of predictions without the GK relations (green
band) and a recursive application of the GK relations (open red
circles); see the text for details.

nuclides. This result underscores the importance of referenc-
ing physics constraints in training as it has a substantial impact
on model predictability. Note that the green band designates
a deviation in the maximum and minimum values alone;
the variation in the associated individual uncertainties is not
shown here.

A recursive application of the GK relations is shown by
open red circles in Fig. 2. These relations perform exceedingly
well close to known mass measurements where there is only a
single unknown mass [46]. To extrapolate further, recursion is
used [47]. However, the uncertainty quickly compounds upon
repeated iteration limiting the predictive capability of this
approach [48]. This is in contrast to the present Letter which
seeks to fulfill the constraints of the above equations without
repeated iteration.

Of primary interest to the nuclear physics community is
not just the ability to model the properties of known nuclei
(here, masses), but also the ability to apply these same models
to predict the properties which currently cannot be produced
or otherwise studied in laboratory settings. This has, to date,
been a particularly difficult situation for nuclear theory, be-
cause whereas, e.g., microscopic, macroscopic-microscopic,
or phenomenological approaches to modeling atomic nuclei
may be applied to nuclei well outside the range of those used
for parameter calibrating, it has proven challenging to develop
a robust picture of the overall uncertainty in the extrapolated
predictions. Recent efforts have included the application of
Gaussian processes and Bayesian methods to better quantify
the uncertainties of model parameters, particularly, those of
microscopic nuclear models (see Refs. [14,49,50] and refer-
ences therein).

Figure 2 gives some insight into how we may proceed
with regard to understanding both the quality of PIML
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extrapolations beyond available data as well as how these
predictions can assist in our understanding of total (statisti-
cal, systematic, and/or model) uncertainties of nuclear mass
predictions. In particular we note that the results of our cal-
culations were derived from both training and testing against
AME2016 data. In the time that has since passed, there have
been a number of experiments which have provided data
that extend beyond the limits of this dataset, and, in par-
ticular, the results of Ref. [45] extended the measurements
of the neodymium isotopic chain shown in Fig. 2 towards
a series of more neutron-rich isotopes up to atomic mass
number A = 160.

On the question of extrapolation, we see that PIML predic-
tions (which were constructed with no information concerning
the data of Orford et al. [45]) would appear to generally follow
the trends in nuclear mass suggested by the additional mea-
surements, and indeed lying well within the 2σ -uncertainty
intervals. This suggests that the PIML model (or other
models founded on similar principles) may reasonably ex-
trapolate towards the more exotic short-lived nuclei without
any grotesque violation of basic nuclear physics principles,
consistent with the design goals of our approach as laid out in
the Methods section.

Furthermore, the PIML approach naturally provides thor-
oughly robust estimates with respect to the uncertainties
pointwise for each individual prediction, i.e., each individual
mass prediction is associated with its own uniquely inferred
uncertainty. Indeed, the uncertainties shown in Fig. 2 by the
shaded bands clearly reflect their expected behavior, insofar
as the error bands are narrowly focused about their mean (but
not unreasonably so) where AME data exists, whereas the
predictions begin to drift past the limits of the training and
testing dataset, the same uncertainty bands begin to diverge,
up to about 3σ ≈ 1 MeV for the isotopes shown. This opens
up the possibility for more thorough uncertainty quantification
analyses based on this general approach, which we intend to
explore in future works.

An important consequence of PIML modeling is that the
output of the network may be interpreted and understood as
with any useful theoretical model. To this end, we compute
Shapley additive explanations (SHAP) values [51] to mea-
sure feature importance. Figure 3 ranks the eight features
when applied to the more recent AME2020 [44]. We find that
macroscopic quantities rank the highest in determining the
masses, followed by the features which control the quantum
effects. Figure 3 reflects the long held belief that, to first
order, the atomic nucleus is well described by bulk macro-
scopic features, whereas microscopic features induce subtle,
yet extremely important corrections [52,53]. This is evident
when comparing a nucleus with its close neighbors where the
macroscopic features may be very nearly equal, but the quan-
tum effects in these nuclei can lead to dramatic differences in
nearly every nuclear observable.

Conclusions. We present a probabilistic machine learning
algorithm with the capacity to directly predict the nuclear
binding of atomic nuclei. We achieve an unprecedented match
to training data with a root-mean-square error of 186 keV
(≈20 % of the AME) whereas utilizing a single physical con-
straint and only eight parameters defining the feature space.

FIG. 3. The ranking of feature importance measured by SHAP
value over the entire AME2020 [44]. Macroscopiclike terms rank the
highest followed by the quantum effects of Pauli exclusion, valence
nucleons, and pairing.

Our model is capable of predicting all of the AME2016 with
Z � 20 at σrms ≈ 316 keV.

Our PIML approach affords the ability to analyze man-
ifestations of physical phenomena. We demonstrate this
by establishing relative importance of macroscopic and
microscopic input features which is consistent with the
traditional understanding of the atomic nuclear binding en-
ergy viz. the semiempirical mass formula as well as with
macroscopic-microscopic and fully microscopic methods.
Figure 3 reinforces this viewpoint by ranking the eight fea-
tures implemented in this Letter using the game theoretic
SHAP measure [54]. Importantly, it is found that macroscopic
features are ranked as most influential since they determine
the bulk of nuclear binding, followed by features that are
more closely associated with quantum corrections. This cal-
culation is performed over the entire predictive range of the
AME2020 nuclei and shown to retain this behavior. Study of
this behavior far from measured isotopes will help to assess
the extrapolation quality of this procedure and is the subject
of future work.

The technology developed here is general and may, in
principle, be applied to the study of any physical observable
or combination thereof. A concerted effort in this approach
opens new possibilities to capture complex physics that is
not currently viable via other contemporary approaches to
computational physics. This may prove especially valuable in
advancing the study of a wide range of many-body problems
that permeate physics.

Data and Software. The ML mass model predictions
associated with this Letter are available upon request to
the corresponding author. The software (source code) used
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in this Letter is also available upon request, subject to
the stipulations of release from Los Alamos National
Laboratory.
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