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1. Introduction

The rapid neutron capture or r-process is one of two primary methods by which heavy element
formation occurs. It is responsible for approximately half the abundance of nuclides above A∼ 100
[1]. The fast timescale of rapid neutron capture promotes competition between capture rates and
beta rates allowing the r-process path to move far from stability. The understanding of this interplay
between neutron capture, β -decay along with other nuclear reactions is crucial for unlocking the
secrets of heavy element production. Previous studies of neutron capture rates have been performed
by [2, 3] for isotopes in the A = 130 region of the r-process abundance pattern. Global capture rate
modifications have also been performed [7]. However, a detailed study of neutron capture rates in
the rare earth peak has not been performed. Because of it’s location, the rare earth peak (REP) offer
a great diagnostic for producing a consistent r-process pattern making it a unique tool for probing
the r-process. In this contribution, we identify important neutron capture rates among the rare earth
isotopes and show how these rates influence specific sections of the abundance pattern under two
types of r-processes, hot (classical) and cold.1 For each environment we isolate conditions which
consistently produce the rare earth region in agreement with the solar data.

2. Modeling the R-process: Producing A Consistent Rare Earth Peak

The site or sites in which the r-process occurs still remains an open problem. There are sev-
eral possible candidates which include supernovae [4], gamma ray bursts [5] and compact object
mergers [6]. Along with nuclear physics inputs [8 – 10] our simulations use winds characterized
by outflow timescale (τ), entropy (S), and electron fraction (Ye) which could occur in any of these
environments. Neutron capture rates are studied under two different types of winds: a classical, hot
wind parameterized by [11] and a cold wind introduced by Wanajo [12] and parameteration from
[13]. To systematically study neutron capture rates we first determined the set of wind conditions,
(s,Ye,τ) which best produced a rare earth peak matching the solar data. This is done by finding the
smallest values of equation 2.1. The results are shown in Fig. 1.

Rrep =
A=180

∑
A=150

|Y (S,τ,Ye)
A −Y solar

A |
Y solar

A
(2.1)

3. Neutron Capture Studies

Our capture rate studies consist of a baseline simulation where the conditions and nuclear data
input are fixed. Further simulations are performed using the same input with only an individual
capture rate change by a factor, K. We evalute the effects of an individual capture rate, (N,Z) by
considering the change induced on the final abundance pattern. This is quantified in equation 3.1,

FK(N,Z) = 100∑
A

|Y K
A (N,Z)−Y baseline

A |
Y baseline

A
(3.1)

In Fig. 2 we show the results of two separate neutron capture rate change studies for a hot and
cold environment.

1Global capture rate studies will be performed elsewhere.
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Figure 1: This figure highlights the regions where simulations produce rare earth peaks that best agree
with the rare earth peak of the solar data, (N�,r) using a hot (left panel) and cold (right panel) r-process. To
produce strong r-processes with consistent abundance patterns out to the third peak (A∼ 195) we use Ye = .25
which is consistent with compact object mergers [14]. The lighter pink colors represents simulations which
match the solar data the best; smaller values of Rrep. In the white region unsatisfactory rare earth peaks are
produced (Rrep & 15).

4. Neutron Capture in the Rare Earth Sector

A change in neutron capture rate can lead to either a neutron capture effect where more mate-
rial is shifted to the right, (Z,A)→(Z,A+1) and beyond in the N-Z plane relative to the abundance
distribution of the unchanged capture rate or to a photo-dissociation effect where material shifts
from the right to the left, (Z,A+1)←(Z,A) and beyond relative to the unchanged capture rate abun-
dance distribution [3]. A large difference in nuclear flow between the baseline and capture rate
simulation is the hallmark of a neutron catpure or photo-dissociation effect.

To highlight the effects of significantly influential neutron capture rates from our neutron cap-
ture studies (Fig. 2) we show in Fig. 3, a comparison of abundance curves between five elements
from each wind and the solar abundances and baseline simulations.

Individual neutron capture rates can have significant influence on the flow of material through
a specific region [2, 3]. This can occur only when the particular isotope is out of equilibrium with
surrounding nuclei. In the hot r-process temperature are sufficiently high to support (n,γ)� (γ,n)
equilibrium for long times. This can be seen in Fig. 2 by noting very little capture effects (the white
region) in the bottom right portion of the top panel. In cold r-process (n,γ)� (γ,n) equilibrium is
short lived, and so neutron capture effects manifest themselves earlier; see bottom right portion of
the bottom panel in Fig. 2.1

Further constraints must be satisfied in order for a change in neutron capture rate to produce
a significant neutron capture effect. For example large nuclear flow through the neutron capture
reaction channel in the baseline simulation is required and the corresponding photo-dissociation
flow should be small. Another significant constraint is the limitation of flow saturation. Flow
saturation occurs when the sum of all in-flowing material matches the out-flowing material through
the neutron capture channel. In the cold r-process the neutron capture flows of odd-N nuclei are
closer to saturation than even-N nuclei; see the bottom right portion of the bottom panel of Fig. 2.
A detailed discussion of this effect along with the other constraints will be provided in [15].

1In both cases the path pushes out towards the neutron dripline beyond the range of the figure.
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Figure 2: Highlighted are the neutron capture rates which significantly influence the abundance pattern
for a hot (top panel) and cold (bottom panel) r-process. The conditions for the hot and cold environments
were chosen from the minimization of Rrep using Fig. 1. In both cases the capture rates were changed
by a factor of K = 50. However, individual neutron capture rates can vary by many orders of magnitude
between theoretical models; see Fig. 1 in [2]. Each color represents a factor of two change in F with white
representing little to no change.

5. Conclusions

Neutron capture rates in the rare earth region of the abundance pattern strongly influence the
local features of this sector. These effects are local compared to the global modifications seen
with capture rate changes in more abundant regions; for instance the A = 130 peak [2, 3]. The
neutron capture effect is an out of equilibrium process occuring during freeze-out. While different
environments e.g. hot and cold, highlight different regimes of nuclear physics, neutron capture rates
are always found to be influential. Neutron capture rates in the rare earth peak play an important
role in the r-process and must be well understood to accurately predict abundance patterns.
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Figure 3: Shows the effect of individual neutron capture rates on the rare earth abundances. The baseline
curve, Ybaseline is shown in black and the solar data is shown in gray. For the two winds we highlight five
elements whose neutron capture rates were changed individually by a factor of K = 50.
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