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Collective enhancement in the exciton model
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The pre-equilibrium reaction mechanism is considered in the context of the exciton model. A
modification to the one-particle one-hole state density is studied which can be interpreted as a
collective enhancement. The magnitude of the collective enhancement is set by simulating the
Lawrence Livermore National Laboratory (LLNL) pulsed-spheres neutron-leakage spectra. The
impact of the collective enhancement is explored in the context of the highly deformed actinide,
239Pu. A consequence of this enhancement is the removal of fictitious levels in the Distorted-Wave
Born Approximation often used in modern nuclear reaction codes.

I. INTRODUCTION

Nuclear reaction modeling for strongly deformed nu-
clei remains an open challenge for contemporary theoret-
ical studies. Modern reaction codes separate the reac-
tion mechanisms into three broad categories. In a direct
reaction, the incident particle interacts on a fast time
scale with a single nucleon that generally resides near
the surface of the target system. The direct reaction
cross section evolves slowly as a function of incident par-
ticle energy [1]. In contrast, compound nucleus formation
occurs when a large number of nucleons participate for a
sufficiently long enough time that a thermal equilibrium
ensues in the residual system [2]. This mechanism occurs
at low energies inside the volume of the residual system.
The cross section of this mechanism may vary strongly
with small change in the incident-particle energy.

Pre-equilibrium is the third, intermediate reaction
mechanism that embodies both direct- and compound-
like features. Pre-equilibrium reactions occur on a
longer timescale than a direct reaction but on a shorter
timescale than compound nucleus formation [3]. This
mechanism is characterized by an incident particle that
continually enables subsequent scattering. As the scat-
tering proceeds, increasingly more complex states are cre-
ated in the residual system with each successive process
gradually losing information contained in the initial reac-
tion. This reaction mechanism is important to consider
with highly energetic incident particles. If the residual
system has sufficient excitation energy, creation of sub-
sequent particles may be possible [4].

There are two distinct approaches to describe the
pre-equilibrium process for nucleon-induced reactions on
medium- to heavy- mass nuclei: purely quantum mechan-
ical models and phenomenological-based models. Quan-
tum mechanical models use the Distorted-Wave Born
Approximation (DWBA) for the multi-step process to
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couple to the continuum in a residual nucleus. These
models adopt different statistical assumptions, mainly
for the two-step process, where 2-particle-2-hole configu-
rations are created by the NN interaction. Examples
of quantum mechanical models are Feshbach-Kerman-
Koonin (FKK) [5], Tamura-Udagawa-Lenske (TUL) [6],
Nishioka-Weidenmüller-Yoshida (NWY) [7], and Luo-
Kawai [8].

Because the angular momentum conservation is prop-
erly included in these quantum mechanical models, they
better reproduce the γ-ray production data that are sen-
sitive to the spins of initial and final states [9]. While
these models provide more fundamental insight into nu-
clear reaction mechanisms, the downside of their appli-
cation in nucleon-induced reactions is their high compu-
tational cost for the description of the relatively small
fraction of the total reaction cross section.

The second approach is phenomenological in nature.
An example is the exciton model which treats pre-
equilibrium scattering as a chain of particle-hole exci-
tations [10, 11]. In this context, the particle and hole
degrees of freedom are referred to collectively as excitons
and the exciton number for a single component system
is given by n = p+ h. Transitions between particle-hole
configurations with the same exciton number, n, have
equal probability. The time-dependent master equations
controls the evolution of the scattering process through
transitions to more or less complex configurations. At
any step in this process an outgoing particle may be
emitted which is referred to as pre-equilibrium emission.
The time integrated solution provides the energy aver-
aged particle spectra. Central to the exciton model is
the set of particle-hole state densities that govern the
magnitude of the excitations. In particular, the relative
magnitude of the state densities are not fully constrained
by differential data.

A practical step forward is to combine both of these
approaches: feed the quantum mechanical calculations
to the exciton model. For example, the angular mo-
mentum transferred to a 1-particle-1-hole configuration
is calculated by FKK, and the spin distribution of the
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populated final states are parameterized in the exciton
model [9, 12, 13]. This technique enables a more realis-
tic spin transfer to the residual nucleus, while the whole
pre-equilibrium strength can be determined by the more
established exciton model framework.

Although this combined approach compensates defi-
cient information of angular momentum transfer in the
exciton model, it is insufficient to provide individual
contributions from different particle-hole configurations
to the total pre-equilibrium energy spectrum. It is
known that deformed nuclei at relatively low excitation
energies show collective behavior, which can be evalu-
ated by the Quasi-particle Random Phase Approxima-
tion (QRPA) [14, 15], as shown by Kerveno et al. [9]. This
collective excitation can be interpreted as an effective
enhancement in the partial state density for 1-particle-
1-hole configurations. Ergo, incorporating a collective
enhancement for the 1-particle-1-hole state density into
the exciton model may offer better modeling of the en-
tire nuclear reaction occurring in highly deformed nuclei
such as the actinides. Crucially, this procedure can be in-
tegrated into the Hauser-Feshbach theory which follows
the statistical decay of the residual nucleus.

In this paper we study this combined practical tech-
nique. We propose an increase to the 1-particle-1-hole
state density used in the exciton model and include it
in the Los Alamos statistical model framework, CoH3

[16, 17]. We study the impact of this enhancement in the
context of neutron-induced reactions on 239Pu. We use
feedback from Lawrence Livermore National Laboratory
(LLNL) pulsed-sphere neutron-leakage spectra to set the
magnitude of the enhancement factor and find that this
scale factor is significantly above unity. We present the
changes to the cross sections in the results section and
summarize our findings in the final section.

II. THEORY

A. Exciton model

We employ the two-component exciton model [18, 19],
which distinguishes neutron and proton in the particle-
hole configurations. This is denoted schematically in
Fig. 1. Since this model has been well established and ex-
tensively applied to particle emission data analysis, only
a brief description of some of the relevant parts of the
model is given below.

We denote the particle-hole configuration by c, which
abbreviates the number of particles and holes in the
neutron and proton shells as c ≡ (pν , hν , pπ, hπ). We
also define the total number of excitons, nν = pν + hν ,
nπ = pπ + hπ, and nt = nν + nπ. For a particle hav-
ing z-protons and n-neutrons emitted in output channel
b, the residual configuration will be designated by cb,
that stands for pπ − z and pν − n. In the case of an
incident neutron on a target system with Z-protons and
N -neutrons, the composite system would be the nucleus

… To equilibrium …

3 excitons 5 excitons

Fermi Energy

FIG. 1. (Color Online) A schematic depiction of the first
few stages of the 2-component exciton model from an initial
excitation with a neutron. The particles, in this case nucleons
(neutrons and protons), are shown as filled circles with holes
indicated by open circles. The solid lines represent equally
spaced single-particle states.

— before compound nucleus formation — (Z,N+1), and
the residual system might be (Z, N) after emission of the
neutron, e.g. in the case of inelastic scattering.

For the pre-equilibrium nuclear reaction, (a, b), with
input channel, a, and output channel, b, the emission
rate of the outgoing particle b is written as

Wb(c, E, εb) =
2sb + 1

π2~3
µbσ

CN
b (εb)εb

ω(cb, U)

ω(c, E)
fFW , (1)

where E is the total energy of the composite system,
U is the excitation energy in the residual nucleus, and
ω(c, E) is the composite state density at the excitation
energy E. A commonly used step function, fFW, is em-
ployed to limit the hole state configuration within the
potential depth [20]. The values of ε, sb, and µb, denote
the emission energy, the intrinsic spin of particle b, and
the reduced mass respectively. The compound formation
cross section for the inverse reaction calculated by the
particle transmission coefficient is σCN

b (εb).
The pre-equilibrium emission takes place at different

particle-hole configurations, which is characterized by the
occupation probability P (c) and its lifetime τ(c). The
observed energy-differential cross section is a convolution
of all the configurations

dσ

dεb
= σCN

a (εa)
∑
c

P (c)τ(c)Wb(c, E, εb) , (2)

where σCN
a is the compound nucleus formation cross sec-

tion for channel a.
We employ the τ(c) calculation proposed by

Kalbach [21] and adopt the closed-form expression for
P (c). The most important ingredients of this model are
the single-particle state densities, g, and the effective av-
erage squared matrix element M2 for the two-body inter-
action. The effective average squared matrix element is
considered as an adjustable model parameter in the exci-
ton model, and often phenomenologically parameterized
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by comparing with experimental data [19]. We now dis-
cuss the single-particle state densities (the g’s) and their
role in setting the composite state density, ω.

B. State density

The composite state density ω(c, E) is given by the
Williams’ formula [22] for the two-component case [18]

ω(c, E) =
gnνν gnππ {E −∆−A(c, E)}nt−1

pπ!hπ!pν !hν !(nt − 1)!
, (3)

where gν,π is the single-particle state densities, ∆ is the
pairing correction energy [23], and A(c, E) is the Pauli
correction function defined as,

A(c, E) = Eth −
p2
ν + h2

ν + nν
4gν

− p2
π + h2

π + nπ
4gπ

, (4)

Eth =
[max(pν , hν)]2

gν
+

[max(pπ, hπ)]2

gπ
. (5)

This formula can be derived under the assumption that
the single-particle states are equally spaced in energy.
The single-particle state densities for the neutron and
proton shell in Eq. (3) are often estimated simply by gν =
N/Cν and gπ = Z/Cπ, where Cν,π is between 10 and
20 MeV. Values in the lower end of this range correspond
to single particle levels are evenly distributed near the
Fermi surface.

In a more microscopic view, gν or gπ can be evalu-
ated by solving the Schrödinger equation for a one-body
potential, and applying Strutinsky’s method [24, 25] to
extract the single particle state density. Alternative ap-
proach was proposed by Shlomo [26]. Using the Struti-
nsky approach, we employ the axially-symmetric fold-
ing Yukawa potential of the finite range droplet model
(FRDM) [27, 28] to generate the single-particle state den-
sity g(ε) for various nuclei:

g(ε) =
∑
i

δ(ε− εi), (6)

where εi is the energy of i-th single-particle state in the
folding Yukawa potential. The single-particle state den-
sity, g(ε), is expanded by a series of the Hermite polyno-
mial to separate into a smoothly varying part g(ε) and
locally fluctuating part δg(ε) [25].

The single-particle state density at the Fermi surface
is given by g(ε = EFermi). This quantity calculated from
FRDM is shown for a range of stable nuclei in Fig. 2.
Also shown are the linear approximations to ḡν and ḡπ
using Cν = 19.2 and Cπ = 16.0 MeV. The single-particle
state density for neutrons is generally found to be less
than that of protons for the same number of particles as
indicative of the aforementioned constants.

The state density for a system can also be constructed
via a combinatorial method for the single-particle, εi
spectrum. For completeness, we also perform this cal-
culation, following the work of Ref. [29] and references
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FIG. 2. Single-particle state densities for various nuclei cal-
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FIG. 3. The 1p-1h state densities for 239Pu calculated
by Williams’ formula [22] (dotted and dot-dashed lines) and
240Pu calculated by the combinatorial single-particle model
(solid line). The difference between 239Pu and 240Pu is negli-
gible.

therein, in which all the 1p-1h configurations are com-
bined using the single-particle levels from FRDM. Unlike
the assumptions of the Williams’ formula [Eq. (3)], these
single-particle states are not equally spaced in energy.
As an approximation to the residual system, 239Pu, we
use the composite system, 240Pu to compute the 1p-1h
state density, where axial symmetric deformation is as-
sumed without a unpaired nucleon. The difference in the
particle-hole level densities in these nuclei is negligible.

Figure 3 shows the 1p-1h state density calculated com-
binatorially from the single-particle states (solid line) and
from application of the Williams’ formula (dotted line).
Good agreement is found between these two approaches,
especially between an excitation energy of 0 to 10 MeV.
Above 10 MeV, both calculations flatten out where other
higher order p-h excitations dominate.
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C. Collective enhancement of state density

The emission rate Wb(c, E, εb) is proportional to
ω(cb, U)dU , which is the number of final states in the
residual nucleus. In the case of neutron inelastic scat-
tering, the composite system the p-h configuration can
be either c = (2, 1, 0, 0) or c = (1, 0, 1, 1), while the
residual system cb = (1, 1, 0, 0) or (0, 0, 1, 1). The 1p-
1h state density in Eq. (3) of the residual system reduces
to (g2

νg
2
π)(E −∆) at relatively low excitation energy and

it is in this region that the change to the state density
will be explored.

Although the combinatorial calculation may include
both the nuclear deformation and pairing effects to some
extent, its static nature excludes a dynamical effect due
to the residual interaction. It is well known that the miss-
ing residual interaction modifies the state density [30, 31].
This is especially important for strongly deformed nu-
clei, where rotational and vibrational collective motions
enhances the transition matrix elements for the inelastic
scattering process that leaves the residual nucleus in the
1p-1h configuration.

To include this enhancement in the exciton model, we
introduce a phenomenological enhancement factor into
the state density as

ωeff(c, E) = Kcoll(c, E)ω(c, E) , (7)

where the collective enhancement factor is

Kcoll(c, E) = {(κ− 1) exp(−γE)} δn,2 + 1 . (8)

The Kronecker delta on n (the number of excitons), en-
sures Kcoll(c, E) can be larger than unity when c =
(1, 1, 0, 0) or (0, 0, 1, 1). The collective enhancement fac-
tor, κ, is an adjustable parameter (κ ≥ 1) which we de-
termine in the next section, and γ is the damping fac-
tor such that the collective enhancement disappears at
higher excitation energies. Because observed rotational-
vibrational band heads in the nuclear structure of ac-
tinides are typically a few hundred keV or so, we empiri-
cally estimated γ to be approximately 1 MeV. Note that
the phenomenological enhancement factor we introduced
implicitly includes a mechanism of enhanced scattering
strength due to the collectiveness, which is not considered
in the traditional exciton model. Hence, the calculated
state density should be viewed as an effective density.

Returning to Fig. 3, we see that the state density with
collective enhancement, ωeff (dot-dashed line), shows a
pronounced rise at lower excitation energy before return-
ing to the baseline ω of Eq. (3) at higher excitation en-
ergy. The parameter γ in Eq. (8) determines the strength
of the energy dependence while κ sets the overall scale of
the enhancement. In the next section we determine the
value of κ.
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FIG. 4. The 239Pu(n,2n) cross section with a range of collec-
tive enhancement factors, κ = 1, 5, 10, and 15. An increased
value of κ effectively reduces the (n,2n) cross section.

III. RESULTS

A. Impact on cross sections

Below we explore the impact of the collective enhance-
ment for neutron-induced reactions on 239Pu.

The influence of the collective enhancement on the
239Pu(n,2n) cross section is shown in Fig. 4, calculated
with CoH3. As the collective enhancement factor in-
creases from unity, the (n,2n) cross section decreases due
to the shift towards a stronger pre-equilbrium reaction
mechanism. Near threshold, there is minimal impact on
the (n,2n) cross section. Larger differences arise starting
around 8 MeV and maximizing to a spread of roughly 35
mb around the peak of the calculated (n,2n) cross section
at 12 MeV. The case of κ = 10 performs the best with a
minimal χ2 value among all datasets listed in the figure.

For inelastic scattering of 14 MeV neutrons on 239Pu,
the effect of including collective enhancement in the ex-
citon model is shown in Fig. 5 for angle integrated spec-
trum and in Fig. 6 for the double-differential cross sec-
tions at 40◦. The collective enhancement causes increase
of the angle integrated energy-spectrum (Fig. 5) for out-
going neutron energies above 8 MeV. Around 13 MeV,
this effect disappears as pre-equilibrium emission to dis-
crete levels is turned off. The ENDF/B-VIII.0 results are
lower than the exciton model below 11 MeV and bump
up to be slightly above the present results at 12 MeV.
This increase in the evaluated data is produced by ar-
tificial DWBA contributions to discrete levels that, for
this purpose, extend up to excitation energy of 4 MeV.
Out of the five experimental points in Fig. 5, the first
two lower energy points are below both calculations and
ENDF/B-VIII.0 evaluation. The next two points agree
better with the evaluation but are also consistent with
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FIG. 5. Neutron emission spectra for the 239Pu(n,n’) reac-
tion at incident energy of 14 MeV plotted in the outgoing
neutron energy range sensitive to the collective enhancement.
The present approach is compared with the standard exciton
model (no collective enhancement, κ = 1), ENDF/B-VIII.0
evaluation and experimental data.
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FIG. 6. As in Fig. 5 but for double-differential cross section
at 40◦.

both calculations. Around 12 MeV the last experimen-
tal point is well described by the present calculations
and ENDF/B-VIII.0 evaluation, while the baseline ex-
citon model is considerably lower. We caution that the
precision of these experimental values, however, is rather
low as they were obtained by averaging widely scattered
double-differential data (such as those shown in Fig. 6).
This reflects difficulty of measuring neutron spectra on
actinides.

B. Determination of collective enhancement
parameter, κ

The validation of the calculations against differen-
tial data and neutron spectra, which are most directly
affected by the collective enhancement, turns out to
be indicative but not conclusive. For this reason, we
turn to another measured response — the Lawrence
Livermore National Laboratory (LLNL) pulsed-sphere
neutron-leakage spectra.

LLNL pulsed-sphere neutron-leakage spectra [32] offer
an indirect way to gauge the strength of the collective en-
hancement factor. These experiments are quasi-integral
in nature: a deuteron beam hits a tritiated target in the
center of a sphere mostly consisting of plutonium, and
produces incident neutrons from 12–15 MeV. Incident
neutrons scatter in the sphere material and either induce
fission, releasing prompt or delayed neutrons, or scat-
ter elastically and inelastically. The produced outgoing-
neutron spectrum is measured at different angles as a
function of time-of-flight (TOF). The leakage spectra are
sensitive mostly to elastic and discrete inelastic levels at
the earliest TOF, while the prompt-fission neutron spec-
trum dominates above 250 ns [33, 34]. There also is a val-
ley in the leakage spectra right after the peak of neutrons
resulting from elastic and discrete-level inelastic scatter-
ing, and before neutrons stemming from fission become
dominant. Neutrons in this valley are produced mostly
through continuum-inelastic processes.

To determine the value of κ, we simulate LLNL pulsed-
spheres neutron-leakage spectra and compare with ex-
perimental data. The data have reported experimental
uncertainties in the range of 0.5–2%, but are likely un-
derestimated. The simulations were undertaken with the
neutron-transport code MCNP-6.2 [35]. All input data
except those of 239Pu were taken from the latest evalua-
tion, ENDF/B-VIII.0 [36].

A simulation of the pulsed spheres is performed for
κ = 1, 5, 10 and 15. Figure 7 shows the results of the sim-
ulations at different observing angles. From inspection of
the calculated (C) to experimentally observed (E) ratios,
we find that no collective enhancement (κ = 1) leads to a
distinct under-prediction of the neutron-leakage spectra
in the valley while a collective enhancement of κ = 15
leads to an over-prediction. Using the different angle
cuts, we find that a value of κ = 10 performs the best
which is in agreement with the trials performed in the
previous section that compared to experimental data.

IV. SUMMARY

We have proposed an enhancement to the 1p-1h state
density used in the exciton model, with functional form
reported in Eq. (8). The magnitude of the collective
enhancement factor, κ ≈ 10, has been estimated us-
ing comparison to LLNL pulsed spheres in conjunction
with experimental data. The introduction of this en-
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FIG. 7. LLNL pulsed-sphere neutron-leakage spectra [32, 33]
were simulated for a sphere of Pu with a neutron mean free
path of 0.7 at two different angles with different values of the
collective enhancement, κ, and are compared to ENDF/B-
VIII.0 and experimental data.

hancement factor allows for a better reproduction of the
239Pu (n,2n) cross section as well as double-differential
cross sections in version 3 of the Los Alamos statistical
Hauser-Feshbach model code, CoH. A consequence of the
collective enhancement is the removal of ficitious DWBA
levels used to simulate this effect in nuclear data eval-
uations [36]. The proposed modification to the 1p-1h
state density thus enables a more consistent physical de-
scription of the pre-equilibrium reaction mechanism for
highly-deformed actinide nuclei.
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equilibrium decay and the exciton model, Nuclear
Physics A 205, 545 (1973).

[11] K. Gudima, S. Mashnik, and V. Toneev, Cascade-exciton
model of nuclear reactions, Nuclear Physics A 401, 329
(1983).

[12] T. Kawano, P. Talou, and M. B. Chadwick, Production of
isomers by neutron-induced inelastic scattering on 193ir
and influence of spin distribution in the pre-equilibrium
process, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 562, 774 (2006), proceed-
ings of the 7th International Conference on Accelerator
Applications.

https://doi.org/10.1142/5612
https://doi.org/10.1142/5612
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/5612
https://doi.org/10.1021/ed049p529
https://arxiv.org/abs/https://doi.org/10.1021/ed049p529
https://doi.org/10.1103/PhysRevLett.17.478
https://doi.org/10.1016/0003-4916(80)90140-2
https://doi.org/10.1103/PhysRevC.26.379
https://doi.org/10.1016/0003-4916(89)90358-8
https://doi.org/10.1103/PhysRevC.43.2367
https://doi.org/10.1103/PhysRevC.43.2367
https://doi.org/10.1103/PhysRevC.104.044605
https://doi.org/10.1103/PhysRevC.104.044605
https://doi.org/https://doi.org/10.1016/0375-9474(73)90705-7
https://doi.org/https://doi.org/10.1016/0375-9474(73)90705-7
https://doi.org/https://doi.org/10.1016/0375-9474(83)90532-8
https://doi.org/https://doi.org/10.1016/0375-9474(83)90532-8
https://doi.org/https://doi.org/10.1016/j.nima.2006.02.053
https://doi.org/https://doi.org/10.1016/j.nima.2006.02.053
https://doi.org/https://doi.org/10.1016/j.nima.2006.02.053


7

[13] D. Dashdorj, T. Kawano, P. E. Garrett, J. A. Becker,
U. Agvaanluvsan, L. A. Bernstein, M. B. Chadwick,
M. Devlin, N. Fotiades, G. E. Mitchell, R. O. Nelson,
and W. Younes, Effect of preequilibrium spin distribu-
tion on 48Ti +n cross sections, Phys. Rev. C 75, 054612
(2007).

[14] M. Dupuis, E. Bauge, S. Hilaire, F. Lechaftois, S. Péru,
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