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ABSTRACT

We develop a method to compute thermally-mediated transition rates between the ground state

and long-lived isomers in nuclei. We also establish criteria delimiting a thermalization temperature

above which a nucleus may be considered a single species and below which it must be treated as two

separate species: a ground state species, and an astrophysical isomer (“astromer”) species. Below the

thermalization temperature, the destruction rates dominate the internal transition rates between the

ground state and the isomer. If the destruction rates also differ greatly from one another, the nuclear

levels fall out of or fail to reach thermal equilibrium. Without thermal equilibrium, there may not

be a safe assumption about the distribution of occupation probability among the nuclear levels when

computing nuclear reaction rates. In these conditions, the isomer has astrophysical consequences and

should be treated a separate astromer species which evolves separately from the ground state in a

nucleosynthesis network. We apply our transition rate methods and perform sensitivity studies on a

few well-known astromers. We also study transitions in several other isomers of likely astrophysical

interest.

1. INTRODUCTION

Certain excited nuclear states may live much longer
than the typical picosecond or femtosecond lifetimes of

other states. The nuclear structure community uses an

informal threshold of 1 nanosecond to distinguish these:

an excited state which lives for longer than a nanosec-

ond is considered metastable and called a nuclear iso-

mer. The term isomer in nuclear physics probably came

from Frederick Soddy (Soddy 1917), who applied it to

nuclei—in analogy with chemical isomers—to describe

long-lived nuclear states; we take this term and modify it

for those states which impact astrophysics. The discov-

ery of nuclear isomerism is usually credited to the work

of Otto Hahn in 1921 in an experiment with uranium

(Hahn 1921). v. Weizsäcker (1936) pointed out that
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the combination of a large angular momentum change

and low transition energy could lead to a long half-life
for electromagnetic decay in nuclei. Bohr & Mottelson

(1953) discussed specific isomeric transitions of the elec-

tric quadrupole type. Today, it is well known that vari-

ous nuclear structure effects can lead to isomeric states,

the best known being spin traps (excited state has a

large difference in spin from lower-lying states), K iso-

mers (orientation of spin relative to axis of symmetry

in a deformed nucleus is very different from lower-lying

states), and shape isomers (excited state is a very differ-

ent shape from lower-lying states) (Walker & Dracoulis

1999).

Astrophysical nucleosynthesis calculations rely on ac-

curate nuclear reaction rate inputs. Indeed, even a sin-

gle reaction rate can profoundly influence astrophysical

evolution (see e.g. Kirsebom et al. (2019)). Researchers

have therefore done a tremendous amount of work over

the decades to compute the rates of nuclear weak inter-
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actions (Fuller et al. 1982; Oda et al. 1994; Langanke &

Mart́ınez-Pinedo 2001), neutron capture cross sections

(Dillmann et al. 2010), and so on. Typically, one of two

treatments is used to compute nucleosynthesis rates. Ei-

ther only the ground state rate is used, or the levels are

considered to be in a thermal equilibrium probability

distribution. The presence of an isomeric state can di-

minish the accuracy of both approaches. When a nu-

cleus is produced, it decays (usually by γ-ray emission)

to a lower state. If it is caught in an isomer before it

reaches ground, it will not necessarily undergo subse-

quent reactions at the ground state rate. Isomers can

also cause the probability distribution of nuclear energy

levels to fail to reach thermal equilibrium. The destruc-

tion rates (e.g. β decay) of long-lived states (the ground

state and isomers) of a single nuclear species can be

vastly different from one another; the most famous ex-

ample in astrophysics is 26Al, which has a ground state

β-decay half-life of 717 kyr, but an isomer with a β-

decay half-life of 6.346 s. If the destruction rates are

also fast relative to the transition rates between the

long-lived states, a rapidly destroyed state will become

depopulated relative to the thermal equilibrium popula-

tion since the population will tend to stay trapped in the

other state. Although the existence of isomeric states in

nuclei has been known for about a century, there remains

much to learn about their influence on the creation of

the elements in astrophysical nucleosynthesis; they are

expected to have significant impact due to their unique

decay properties (Aprahamian & Sun 2005).

Not all isomers have an impact on astrophysical nu-

cleosynthesis. Most isomers transition to lower energy

states preferentially over destruction channels (e.g. the

103.00 keV isomer in 81Se, which transitions to ground

99.949% of the time (Baglin 2008)), and sufficient con-

nection to ground ensures destruction cannot cause de-

viation from thermal equilibrium. Furthermore, isomers

which can have an effect will not make a difference in

all environments; an isomer may prevent thermalization

at low temperature, but in a hotter environment, ther-

mally driven transitions through intermediate states can

enable equilibration. There are also isomers that may be

isolated from the ground state in the astrophysical site

where they are produced, yet are not populated during

production of the nucleus (see e.g. 182Hf in section 3.5

and 113Cd in section 3.6).

We thus see that some isomers can play an influential

role in astrophysical nucleosynthesis, but most do not.

This distinction defines astrophysical isomers, or “as-

tromers”: they are nuclear isomers which have influence

as such in an astrophysical environment of interest.

Astromers by definition do not behave the same as

their associated ground states. Consequently, it be-

hooves nucleosynthesis networks to treat them as sep-

arate species that can be destroyed and created by tran-

sitions into and out of the ground state. In this work

we develop a framework to rigorously treat astromers

and these thermally mediated transitions. We apply

our methods to several nuclei of interest in a number

of astrophysical sites, including analyses of the effects

of uncertainty for three well-known isomers. We also

provide data tables for use in nucleosynthesis networks.

We develop in section 2 a highly precise means of cal-

culating effective transition rates between long-lived nu-

clear states in hot environments. In section 3, we ap-

ply our methods to several well-known and potential as-

tromers, including 26Al, 34Cl, and 85Kr. We give some

further observations and concluding thoughts in section

4. Because astromer ↔ ground transitions are facili-

tated by intermediate states, it is helpful to trace which

intermediate transitions contribute most to the effective

transition rate so that we may efficiently assess the ef-

fects of uncertainty; appendix A describes how we find

the greatest contributors and makes important notes

about symmetries and detailed balance.

2. TRANSITION RATE FORMALISM

Consider a connected system in which every state is

reachable from every other state via some set of tran-

sitions. We divide these states into two classes: end-

point states E, which in our application are the ground

state and isomers in an atomic nucleus; and intermedi-

ate states I, which for us are non-isomeric excited states.

This discussion specializes to the case of two endpoint

states (a single isomer), but the arguments readily gen-

eralize. This section and section A ignore destruction of

the states via β decay, etc. Destruction will be intro-

duced later as simply another set of rates that do not

impact internal transition rates.

We will keep this section general by using the labels A

and B for endpoint states and i, j, etc for intermediate

states. For the sake of concreteness, take A to be the

ground state and B to be an isomer of some nucleus.

Figure 1 provides a schematic for thermally driven tran-

sitions from A to B via intermediate states i, j, and k.

When a system transitions out of state s, it goes to state

t with probability bst.

The transition probabilities bst are related to the tran-

sition rates λst by

bst =
λst

λs ≡
∑
f

λsf
. (1)
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Figure 1. Schematic of transitions from state A to state B
when A and B have little or no direct coupling. If energy
is increasing in the upward direction, then red arrows show
up transitions and blue arrows show down transitions. The
bst are the probabilities that when the system leaves s, it
transitions directly to t. Because A cannot transition directly
toB, transitions between the two require intermediate states.

By inspection,
∑
t
bst = 1, ensuring that there are no

sources or sinks in the system. We compute the λst
using the spontaneous γ-decay rates λshl from a higher

state h to a lower state l. In this article, we follow the

example of Ward & Fowler (1980) and Coc et al. (1999)

and consider only the photon bath.

λhl = λshl(1 + u) (2)

λlh =
2Jh + 1

2Jl + 1
λshlu (3)

u =
1

e(Eh−El)/T − 1
(4)

These may be combined to obtain the useful relation

λst =
2Jt + 1

2Js + 1
e

Es−Et
T λts. (5)

The factor u is the Bose-Einstein distribution of a ther-

mal photon bath and captures the fact that the bath

stimulates transitions from h to l and induces transi-

tions from l to h. As Ward & Fowler (1980) point out,

there can be other thermal interactions which affect the

λst; equations 2-4 can be extended to include other in-

teractions if needed. These equations represent our only

physical assumptions in this section and section A.

With the individual transition probabilities, we are

now prepared to compute the effective thermal transi-

tion rates between endpoint states.

2.1. Effective Transition Rate

We express the effective transition rate ΛAB from A

to B as

ΛAB = λAB +
∑
i

λAiPiB . (6)

The rate λAB is for transitions directly from A to B; this

quantity may be negligible, but in some cases it is not,

so we include it. The sum is over intermediate states

i, and PiB is the probability the system follows a chain

of internal transitions from intermediate state i to the

endpoint state B without passing through A. We require

that the system not pass through A as that would be

like starting over, amounting to a failed transition. In

effect, equation 6 sums the transition rate from A to

each other state times that state’s probability to go to

B.

We now must find the PiB . These can be computed by

considering the first step of all allowed routes from i to

B. A step from i to state s occurs with probability bis.

Now, PiB can be identified as the sum over the proba-

bilities of the possible first steps from i folded with the

probabilities PsB that the new state eventually reaches

B. That is,

PiB =
∑
s

bisPsB , (7)

The sum is over all states s. If s = A, the transi-

tion has failed, and if s = B, the transition is complete;

therefore, PAB ≡ 0 and PBB ≡ 1. States do not transi-

tion to themselves, so bss ≡ 0 ∀ s. These features allow

a slight rewrite.

PiB = biB +
∑
j

bijPjB (8)

The summation in the second term is now only over in-

termediate states. From here, we may express the prob-

lem in matrix form.

−→
P IB =

−→
b IB + bII

−→
P IB

→ (1− bII)
−→
P IB =

−→
b IB (9)

In this expression, the subscript I reminds us that the

vector and matrix indices run over the intermediate

states. So
−→
P IB is the vector with components PiB ,

−→
b IB

is the vector with components biB , and bII is the matrix

with elements bij ; in each of these, i and j are interme-

diate states. Equations 7 and 9 represent a system of

N linear equations in N variables, where N is the num-

ber of intermediate states included in the calculation.

Thus,
−→
P IB can be found with a linear equation solver,

and inserting
−→
P IB into equation 6 yields the effective

transition rate from A to B.
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In the case of a system with more than two endpoint

states, equation 6 holds for all pairs of initial and fi-

nal endpoint states. The method is straightforwardly

extended by redefining PiE as the probability to even-

tually reach endpoint state E from intermediate state i

without passing through any other endpoints, and all of

the same arguments apply.

2.2. Proof of Solvability

By the Invertible Matrix Theorem, if 1−bII is invert-

ible, then a unique solution to equation 9 exists.

−→
P IE = (1− bII)

−1−→
b IE (10)

To show that that 1− bII is invertible, we will use the

logic of Gupta & Meyer (2001).

We note that the full transition matrix b with ele-

ments bst (which includes endpoint and intermediate

states) is a stochastic matrix: its rows sum to unity.

Obviously, b is non-negative (all entries are real and

positive or zero). Furthermore, because every state is

reachable via some path from every other state, b is

irreducible, meaning the rows and columns cannot be

permuted to produce a block diagonal form. If it were

reducible, there would be at least two sets of states that

communicate only with members of their set, and the

graph of the system would not be connected.

Stochastic matrices have an eigenvector with eigen-

value 1; to see this, observe that b
−→
1 =

−→
1 , where

−→
1 is

the column vector with all entries equal to 1. From the

Gershgorin Circle Theorem on upper bounds of spectral

radii, the largest absolute value among eigenvalues (the

spectral radius) of b is 1. Because b is non-negative

and irreducible, the Perron-Frobenius Theorem guaran-

tees that there is exactly one eigenvector corresponding

to an eigenvalue equal to the spectral radius, i.e. 1.

We now rely on a corollary to the Perron-Frobenius

Theorem: any principle submatrix of an irreducible non-

negative matrix has a spectral radius which is strictly

less than the full matrix. A principle submatrix is ob-

tained by deleting rows and columns from a matrix, with

the row and column indices being equal. The matrix

bII is a principle submatrix of b obtained by deleting

the rows containing transitions from endpoints and the

columns containing transitions to endpoints. Therefore,

it has a spectral radius less than 1, and all of its eigen-

values have absolute value (modulus) less than 1.

Finally, let M and N be square matrices with N =

M+ 1. For every eigenvalue Mλi of M, there will be an

eigenvalue Nλi = Mλi + 1 of N. To see this, let −→x be

an eigenvector of M with eigenvalue λ. We then have

N−→x = (M + 1)−→x
= M−→x +−→x
= λ−→x +−→x
= (λ+ 1)−→x . (11)

Taking M = −bII and remembering that all eigenvalues

of bII have modulus less than 1, we deduce that that all

eigenvalues of 1 − bII have a positive real component,

are therefore nonzero, and the matrix is invertible by

the Invertible Matrix Theorem.

3. APPLICATIONS

We will now compute the isomer-to-ground and

ground-to-isomer effective transition rates and β-decay

rates in several nuclei; all calculations assume an elec-

tron density of ρYe = 105 g/cm3. We will use the pre-

scription from Gupta & Meyer (2001) to compute effec-

tive decay rates for ensembles of states corresponding

to the ground state and the isomer. For the reader’s

convenience, we outline the derivation and result here.

Unlike our derivations in section 2, the Gupta & Meyer

(2001) method assumes intermediate states instanta-

neously reach steady state equilibrium with the end-

point states (under most circumstances, a reasonable

assumption that is backed up by a detailed analysis in

that work). They obtain the steady state occupation

fractions Y by noting that the ratio of the intermediate

state i and the endpoint state E occupations is related

to the ratio of the direct transition rates between them;

they call this the “reverse ratio” REi.

REi =
λEi
λiE

=
Yi
YE

(12)

In principle, we would compute this ratio using equa-

tion 5. It is undefined if the direct transition rates are

zero, but because the ratio is independent of the size of

the rates, it remains constant in the limit that the rates

approach zero; we find that

REi =
2Ji + 1

2JE + 1
e

EE−Ei
T . (13)

Finally, each intermediate state has the probability

PiE to eventually transition to endpoint state E before

going to some other endpoint. Gupta & Meyer (2001) in-

terpret this as the fraction of intermediate state i that is

associated with endpoint state E. This interpretation—

along with the assumption of instantaneous equilibra-

tion of intermediate states—enables them to assign a

weight wiE to each state and use those weights to con-

struct an ensemble associated with each endpoint. In
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effect, every state is assigned a modified Boltzmann fac-

tor for each ensemble.

wiE = PiEREi = PiE
2Ji + 1

2JE + 1
e

EE−Ei
T

wE′E = δE′E (14)

The delta function applies to pairs of endpoint states

and ensures that each endpoint contributes only to its

own ensemble. With these weights, we may now com-

pute the effective β-decay rate ΛEβ (or any other rate)

for the ensemble associated with endpoint E.

ΛEβ =

∑
s
wsEλsβ∑
s
wsE

(15)

In this expression, λsβ is the individual β-decay rate of

state s. We are now prepared to compute the transition

rates and β-decay rates of nuclei with isomers.

3.1. 26Al

26Al is produced by massive stars in substantial quan-

tities. Its ground state β-decay lifetime of ∼ 1 million

years means that it lives long enough to be observed af-

ter a massive star dies, but not so long as to become

uncorrelated with where that star died. Since massive

stars have short lifetimes, we infer that if one died re-

cently in a location, that location is probably a region

of active star formation. Hence, 26Al is an important

tracer of star formation (Mahoney et al. 1982; Diehl

et al. 1995), and we are interested in accurately com-

puting its abundance in nucleosynthesis networks. 26Al

production is sensitive not only to the rates in which

it is directly involved, but also to many other reaction

rates in nearby nuclei Iliadis et al. (2011). However,

its treatment is complicated by a long-lived isomer at

228.305 keV that can greatly impact 26Al destruction

rates (Ward & Fowler 1980; Coc et al. 1999; Gupta &

Meyer 2001; Runkle et al. 2001; Reifarth et al. 2018;

Banerjee et al. 2018).

To compute 26Al transition and β-decay rates, we in-

cluded 67 total states: the two endpoint states and 65

intermediate states. In this nucleus and all others in

this section, we used available experimental data for the

spontaneous transition and β-decay rates (Basunia &

Hurst 2016). In 26Al, we supplemented the data with

transition and β-decay strengths computed using the

shell model codes NuShellX (Brown & Rae 2014) and

OXBASH (Brown et al. 2004) along with the usdb inter-

action (Brown & Richter 2006). When a transition rate

is unmeasured and a shell model calculation is imprac-

tical, we use the Weisskopf approximation (Weisskopf &
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Figure 2. The probabilities PiE that intermediate state i
reaches endpoint state E before reaching the other endpoint
state for the lowest three intermediate states in 26Al. Solid
(dashed) lines marked with dots (exes) show probabilities to
reach the isomer m (ground g). Most are insensitive func-
tions of temperature, though P3m climbs suddenly at T ≈ 30
keV (see text).

Wigner 1930). For the β-decay rates, we used the mea-

sured ft values for ground state and isomer β decays,

and we computed matrix elements with the shell model

for all other weak transitions.

Once we have the bst, obtained from equations 1-5,

we use equation 9 to compute the PIE . Figure 2 shows

PIE for the first three intermediate states as functions

of temperature; in this figure and figure 3, the index g

indicates the ground state, and m is the isomer.

While most of the PIE are nearly constant, the jump

in P3m at around 30 keV portends a behavioral change

in the nucleus at this temperature. Indeed, this mani-

fests as an increase in the rate for the ground state to

transition to state 3 and from there ultimately to the

isomer. Figure 3 illustrates this jump; it shows rates

for endpoint states to transition to specific intermedi-

ate states, and from there to eventually transition to

the other endpoint state. That is, figure 3 shows the

terms in equation 6. Whereas most intermediate states’

contributions increase smoothly with temperature, the

third state going from g to m (black solid) has a kink at

∼ 30 keV.

It is no mere coincidence that the kink occurs at the

same temperature where λm3P3g (black dashed) crosses

λm4P4g (red dashed). As the temperature rises, state

4 becomes more accessible from the isomer, driving the

rise of λm4P4g. Once it dominates λm3P3g, the most
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Figure 3. Contributions to Λgm and Λmg in 26Al from
individual first steps out of the ground g (solid with dots)
and isomeric m (dashed with exes) states. The contribution
is the product of the rate to transition directly from the
initial state to the intermediate state and the probability to
go from the intermediate state to the destination endpoint
state.

probable isomer-to-ground transition pathways change1.

Figure 4 shows the three most probable paths from

ground to the isomer at T = 25 keV and 35 keV; by sym-

metry (section A.3), it also shows the isomer-to-ground

paths.

At T = 25 keV, the dominant pathway between 1

(ground) and 2 (isomer) is simply through state 3. But

at T = 35 keV, state 4 is thermally accessible from 2,

and because it is much more strongly coupled to the

isomer than is state 3 (P4m >> P3m in figure 2)2, 2

preferentially transitions to 4. State 4 is only weakly

coupled to ground (P4g in figure 2), and the preferred

route from 4 to 1 is via 3. Therefore, when the isomer

preferentially transitions to state 4 (above T = 30 keV),

the most probable isomer-to-ground path is 2 → 4 →
3 → 1. This “opens up” the 1 → 3 → 4 → 2 path and

creates the kinks. Figure 5 further illustrates this point

by showing the probabilities for state 3 to go directly to

the isomer (b3m), to go to 4 and then eventually to the

isomer (b34P4m, and to go to 5 and then eventually to

the isomer (b35P5m).

Finally, we use equation 6 to compute the effective

transition rates Λ12 and Λ21, shown in figure 6. From

here on, 1 should be understood as the ensemble corre-

sponding to the ground state, and 2 is the ensemble cor-

1 Transition paths, the algorithm we use to find them, and an
important symmetry are detailed in appendix A.

2 To be precise, we should use b3m, b4m, et cetera rather than P .
Nevertheless, P is adequate for the present qualitative analysis.

0 1 2 3
Step

1
(0.0)

2
(228.305)

3
(416.852)

4
(1057.739)

5
(1759.034)

6
(1850.62)

7
(2068.86)

Le
ve

l n
um

be
r

(E
ne

rg
y  [k

eV
])

T=25.0 keV
Rank

1
2
3

0 1 2 3
Step

1
(0.0)

1
(0.0)

2
(228.305)

3
(416.852)

4
(1057.739)

5
(1759.034)

6
(1850.62)

7
(2068.86)

Le
ve

l n
um

be
r

(E
ne

rg
y  [k

eV
])

T=35.0 keV
Rank

1
2
3

Figure 4. The three paths giving the greatest contribution
to the transition rate between the ground state and isomer
in 26Al at temperature T = 25 keV (top) and T = 35 keV
(bottom). Although only transitions from 1 to 2 are shown,
path reversal symmetry guarantees that the routes from 2 to
1 are the same.

responding to the isomer; the ensembles are constructed

as described at the beginning of this section in equations

12-15. The figure also shows various β-decay rates: the

ensemble decay rates Λ1β and Λ2β ; the thermal decay

rate Λβ therm, computed using a thermal distribution

of level occupations; the steady-state decay rate Λβ SS ;

the steady-state decay rates ΛP1
β SS and ΛP2

β SS when the

nucleus is produced exclusively in either the ground state

(P1) or isomer (P2) ensemble; and—for comparison—

the effective decay rate found by Coc et al. (1999). We

computed the steady-state rates with the formalism of

Misch et al. (2018) assuming a two-level system com-

prised of 1 and 2. At low temperatures, we compute

a slightly higher β-decay rate than Coc et al. (1999);

this is because they used laboratory rates, whereas our
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Figure 5. Probabilities to follow routes from the third state
to the isomer m in 26Al. Once the nucleus is in the third
state, b3m is the probability that it transitions directly to
the isomer, while b3iPim is the probability to go to state i
and from there via some path that leads to m without going
through ground.

electron capture rates are enhanced by the dense envi-

ronment. We are otherwise in good agreement.

Let us first understand Λ12, Λ21, Λ1β , and Λ2β . Be-

low T ≈ 7 keV, excited states are inaccessible. The

isomer transitions directly to ground at a slow trickle,

the ground state cannot reach the isomer, and each β

decays at its laboratory rate. Above T ≈ 7 keV, state 3

becomes accessible, the path 1 ↔ 3 ↔ 2 opens up, and

the transition rates begin to rise. At T ≈ 13 keV, Λ12

surpasses Λ1β , and the dominant “destruction” channel

for ensemble 1 is transitions to ensemble 2. At T ≈ 17

keV, the weight w31 of state 3 in ensemble 1 grows great

enough that it contributes significantly to the ensem-

ble β-decay rate. State 3 has allowed decays to 26Mg,

and Λ1β rises accordingly. At T ≈ 30 keV, the path

1 ↔ 3 ↔ 4 ↔ 2 opens up, and the transition rates rise

faster. At T ≈ 35 keV, Λ21 surpasses Λβ2, and the dom-

inant destruction channel for ensemble 2 is transitions

to ensemble 1.

Now let’s examine Λβ therm and Λβ SS , which are

the thermal-equilibrium β-decay rate and the steady-

state (without any 26Al production) β-decay rate, re-

spectively. The thermal decay rate is straightforward

to understand. If 26Al had no isomer, the nuclear level

occupation probabilities would simply follow a Boltz-

mann distribution. At T ≈ 8 keV, the first excited

state would be sufficiently populated to contribute to

Λβ therm, and the decay rate would rise concomitantly.

However, 26Al does have an isomer which suppresses

thermally-driven transitions up from ground. Because

there is no thermally accessible path to populate the
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Figure 6. 26Al transition rates and β-decay rates. Solid
lines with no markers show the effective ground ↔ isomer
transition rates, and other lines show β-decay rates. Red:
Ground state ensemble transition and β-decay rates; down
triangles show the steady-state decay rate when only the
ground state is produced. Green: Isomer ensemble tran-
sition and β-decay rates; up triangles show the steady-state
decay rate when only the isomer is produced. Black (crosses):
Steady-state β-decay rate in the absence of production. Blue
(exes): Thermal equilibrium β-decay rate. Gray (circles):
Effective decay rate from Coc et al. (1999).

isomer, it decays away rapidly, is not replenished, and

has a less-than-thermal population in steady state; this

suppresses Λβ SS . Once Λ12 exceeds Λ1β at T ≈ 13 keV,

the ground state begins to appreciably feed the isomer.

But up until T ≈ 35 keV, the isomer essentially always

β decays. Furthermore, Λ2β >> Λ1β , so 26Al decays as

fast as the isomer is fed, and the steady-state β-decay

rate is approximately equal to Λ12. At T ≈ 35 keV,

when Λ21 exceeds Λ2β , transitions between the ensem-

bles dominate the ensemble decay rates, and the system

at last reaches the thermal equilibrium found by other

authors (Coc et al. 1999; Iliadis et al. 2011; Banerjee

et al. 2018). This defines the thermalization tempera-

ture below which the 26Al isomer is an astromer.

This leaves us to understand ΛP1
β SS and ΛP2

β SS , which

are the steady-state decay rates when 26Al is produced

solely in the ground state or isomer ensembles, respec-

tively. Observe that ΛP1
β SS tracks Λβ SS at all temper-

atures. This is because in steady state without produc-

tion, essentially all of the population is in the ground
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state anyway, so it makes no difference if 26Al is pro-

duced in the ground state ensemble.

In contrast, when 26Al is produced in the isomer en-

semble at low temperature, the ground state is fed ex-

ceedingly slowly. Gradually, a small equilibrium amount

of material will build up in the ground state that brings

down the total decay rate, though this may take many

years (see Misch et al. (2018) figure 5), and it will never

be enough to bring the decay rate to near the ground

state rate. At T ≈ 7 keV, Λ21 increases dramatically,

so the ground state is more rapidly fed. The increased

feeding yields a larger quantity of ground state mate-

rial, and the steady-state decay rate consequently falls.

Once Λ12 overtakes Λ1β at T ≈ 13 keV, the steady-state

decay rate goes to the thermal equilibrium rate. This

follows from equation 18 in Misch et al. (2018) using our

two-ensemble system. That equation is expressed in ma-

trix notation, but we may analyze one of the embedded

scalar equations by selecting a single vector component.

Taking the first element of the vectors, we have

Λ21n2−Λ12n1−Λ1βn1 +(Λ1βn1 + Λ2βn2) p1 = 0. (16)

Here n1 and n2 are the occupation fractions of the

two ensembles, and p1 is the fraction of 26Al produc-

tion that goes into the ground state ensemble. By

assumption p1 = 0, and we are considering a regime

where Λ12 dominates Λ1β ; the latter point implies that

Λ12n1 + Λ1βn1 ≈ Λ12n1. Using these facts along with

equation A13, we find

Λ21n2 − Λ12n1 ≈ 0

→n2
n1
≈ Λ12

Λ21
=
g2
g1
e

E1−E2
T , (17)

which is precisely a thermal distribution between the

ground state and isomer. We conclude that the nu-

clear levels are thermally distributed when Λ12 >> Λ1β ,

leading to the observed agreement between ΛP2
β SS and

Λβ therm. Note well that this is not necessarily an ex-

cuse to just use the thermal decay rate, since it may take

many thousands of years to reach steady state.

Up to now, we have used exact values for the λst.

However, uncertainties in the individual rates lead to

uncertainty in the effective transition rates. We there-

fore performed a sensitivity study by varying the λst.

Figure 7 shows the results of adjusting measured rates

all up or all down by 1 or 2 standard deviations and

shell model rates all up or all down by a factor of 3 or

30. Shell model rates using the USDB Hamiltonian tend

to be good to within a factor of a couple with occasional

large errors relative to experiment of one to two orders
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Figure 7. Range of 26Al effective transition rates. Dark
bands: measured rates increased/decreased by one standard
deviation, shell model rates multiplied/divided by a factor of
3. Light bands: measured rates increased/decreased by two
standard deviations, shell model rates multiplied/divided by
a factor of 30.

of magnitude (see Banerjee et al. (2018)), so this choice

of variations should reasonably probe the range of the

ΛAB . Dark bands show the smaller variations, and light

bands show the larger. Because the λst were adjusted

up and down together, the bands represent reasonable

bounds on the effective rates. Furthermore, our analysis

finds that the thermalization temperature of 26Al is un-

certain within the range between 30 and 40 keV; this is

at odds with Coc et al. (1999), who concluded that the

thermalization temperature is insensitive to remaining

nuclear uncertainties.

A more detailed picture emerges when the λst are var-

ied separately. We identified which individual rates to

change by examining the dominant transition paths; if a

transition existed in paths carrying a total of at least 1%

of the effective rate and that transition’s uncertainty was

at least 10%, we varied it. We adjusted measured rates

up and down by one standard deviation and shell model

rates up and down by a factor of 3. Table 1 shows the

sensitivity of the effective transition rate to variations

in the individual rates.

Our results generally agree quite well with Gupta &

Meyer (2001). The greatest uncertainty in the effective

transition rates arise from λ32 at lower temperatures and

λ43 at higher temperatures.
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Table 1. Most-uncertain individual transitions in the dom-
inant pathways through 26Al. The type column indicates
whether this spontaneous transition rate comes from shell
model calculations (SM) or from experiment (Exp). The
column labeled Fraction shows what fraction of the effec-
tive transitions flow through paths containing the individual
transition (or its reverse). Variation is an estimate of the un-
certainty; we use the published uncertainty for experimental
rates, a factor of 3 for SM rates, and a factor of 10 for Weis-
skopf rates. The last column shows the fractional change in
effective transition rates when the individual rate is adjusted
up and down by one “unit” of uncertainty.

T Trans Type Fraction Variation Impact

10 3→ 2 SM 0.9999 ×3 0.3334–2.9997

15 3→ 2 SM 1.0000 ×3 0.3333–3.0000

20 3→ 2 SM 1.0000 ×3 0.3334–2.9998

25 3→ 2 SM 0.9800 ×3 0.3466–2.9602

4→ 2 Exp 0.0199 20% 1.0

4→ 3 SM 0.0199 ×3 0.9867–1.0399

30 3→ 2 SM 0.4070 ×3 0.7287–1.8139

4→ 2 Exp 0.5930 20% 1.0

4→ 3 SM 0.5930 ×3 0.6046–2.1860

35 3→ 2 SM 0.0315 ×3 0.9790–1.0630

4→ 2 Exp 0.9685 20% 1.0

4→ 3 SM 0.9685 ×3 0.3543–2.9369

40 3→ 2 SM 0.0033 ×3 0.9978–1.0066

4→ 2 Exp 0.9967 20% 1.0

4→ 3 SM 0.9967 ×3 0.3355–2.9933

3.2. 34Cl

34Cl may be observable immediately after a nova (Coc

et al. 1999), which means that accurately computing its

abundance could be interesting. However, it has a long-

lived isomer at 146.36 keV, bringing with it the familiar

difficulty. But unlike 26Al and the other nuclei in this

paper, the 34Cl isomer is more β-stable than the ground

state; the ground state β-decay half-life is 1.5266 s, while

the isomer’s total half-life is 31.99 min (Nica & Singh

2012).

We computed the 34Cl rates using 30 states. As

with 26Al, we supplemented unmeasured transition rates

and β-decay ft values with calculations from NuShellX,

OXBASH, and the usdb interaction. Experimental data

for the key 3 → 2 transition consists only of an upper

bound, so we used our shell model result. Our computed

effective transition rates and β-decay rates are shown in

figure 8 along with the rates computed by Coc et al.

(1999). As with 26Al, we are in good agreement with

the earlier work.

Below T ≈ 10 keV, no paths apart from the direct

transition contribute meaningfully to the transition rate,
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Figure 8. 34Cl transition and β-decay rates. The lines are
as in figure 6.

but above this temperature, the path 2↔ 3↔ 1 opens

up and Λ21 begins to rise. Because 2 is the more β-stable

state, ΛP2
β SS mostly tracks Λβ SS . Once Λ21 dominates

Λ2β , Λβ SS follows it until joins Λβ therm, while ΛP1
β SS

is delayed slightly; 34Cl thermalizes at T ≈ 20 keV.

Below this temperature, the isomer is an astromer. With

ground being the less stable state, Λβ therm and ΛP1
β SS

both track Λ1β until T ≈ 30 keV, at which point the

isomer ensemble is thermally populated at a sufficient

level to pull the thermal and steady state rates down a

bit.

Figure 9 shows the uncertainty bands in the 34Cl ΛAB .

The uncertainty is driven almost entirely by the 3 → 2

transition. Even up to T = 50 keV, all dominant paths

travel through states no higher than state 4, and apart

from λ32, the λst are measured with small experimen-

tal uncertainties. Our dark uncertainty bands (smaller

variations) agree well with the findings of Coc et al.

(1999). The light bands (larger variations) exhibit some

asymmetry: the lower bands are narrower than the up-

per bands at higher temperatures. As λ32 is increased,

the nucleus flows more freely through the 1 → 3 → 2

path, and 3 → 2 is the bottleneck. But when λ32 is

sufficiently decreased, the 1 → 4 → 2 path dominates

at higher temperatures, and the effective transition rate

becomes insensitive to further decrease in λ32.

3.3. 85Kr

In slow neutron capture (s-process) nucleosynthesis,

neutron captures are generally slow relative to β decays,
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Figure 9. Range of 34Cl effective transition rates. Dark
bands: measured rates increased/decreased by one standard
deviation, shell model rates multiplied/divided by a factor of
3. Light bands: measured rates increased/decreased by two
standard deviations, shell model rates multiplied/divided by
a factor of 30. The uncertainties are dominated by the 3→ 2
transition.

so few nuclei are produced which are more than one or

two steps from stability. In most cases, this makes it

easy to trace out the s-process path in the chart of nu-

clides. Starting with a seed nucleus, add neutrons until

you make a β-unstable nucleus. Allow that unstable nu-

cleus to β decay until it’s stable. Resume adding neu-

trons and repeat until you have lead, bismuth, or no

more neutron source.
85Kr lies along the s-process nucleosynthesis path, but

the simple procedure above is derailed by the ground

state’s long-but-not-too-long β-decay half-life of 10.739

years. This creates competition between β decay and

neutron capture which influences the production of

nearby nuclei (Abia et al. 2001). Because the s-process

path can go in two different directions at 85Kr, it is

known as a branch-point nucleus and serves as an in-

teresting diagnostic of the s-process environment. How-

ever, its current usefulness as such is greatly diminished

by two complications: an uncertain neutron capture

cross section (Dillmann et al. 2010), and an isomer at

304.871 keV with a total half-life of 4.480 hours (Singh

& Chen 2014).

We will not address the neutron capture cross section,

but we did apply our method to study the isomer’s effect

on β decay. We used experimental data on the lowest 30
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Figure 10. 85Kr transition and β-decay rates. The lines are
as in figure 6.

levels of 85Kr. We supplemented unmeasured transition

rates with the Weisskopf approximation; 85Kr (N = 49)

is near a closed neutron shell (N = 50)—which dimin-

ishes the effectiveness of shell model calculations—so we

made no further data supplements. Figure 10 shows our

results.

For the most part, 85Kr doesn’t behave in any re-

markable way; the thermal and steady-state decay rates

track each other, including when 85Kr is produced in

the ground state, so the isomer is not an astromer.

This is because in contrast with 26Al, Λ21 exceeds Λ2β

(the green lines cross) at a lower temperature than Λ12

exceeds Λ1β (the red lines cross). Therefore, by the

time the ground state ensemble can appreciably feed it,

the isomer ensemble preferentially transitions back to

ground rather than β decays, and the thermal β-decay

rate is appropriate for all situations except when 85Kr

is produced in the isomer ensemble.

The latter case, however, can give rise to interesting

behavior. Below T ≈ 21 keV, material produced in the

isomer ensemble has an ∼ 80% chance to β decay rather

than transition to ground; this drives up the decay rate

of the species and favors β decay over neutron capture,

rendering the 85Kr isomer an astromer. Above T ≈ 25

keV, the nuclear levels thermalize, and the thermal β-

decay rate is always correct. The weak component of

the s-process occurs in massive stars with temperatures

between 30 and 90 keV, well above the 85Kr thermaliza-

tion temperature. But interestingly, the main s-process
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occurs in pulsing asymptotic giant branch stars of mass

1 − 3 M�; short pulses reach temperature T ∼ 30 keV,

while longer interpulse periods have a temperature of

T ∼ 8 keV. The entire cycle has a period of ∼ 50 thou-

sand years (Busso et al. 1999). This means that the
85Kr isomer alternates being an astromer in the main

s-process.

The uncertainties in the 85Kr effective transition rates

are somewhat different from the 26Al and 34Cl cases

in two ways. First, the experimental uncertainties are

asymmetric (see table 2). Second, the unmeasured

rates are estimated with the Weisskopf approximation

rather than the shell model; the Weisskopf approxima-

tion tends to only be precise to one or two orders of

magnitude.

Figure 11 shows the uncertainties in the 85Kr ΛAB .

The upper light band is much narrower than the lower

light band due to a bottle-necking effect similar to 34Cl.

As the λst are turned up together, the experimental λ41
becomes a bottleneck; because its uncertainty is much

less than the Weisskopf rates, it is turned up less than

the Weisskopf rates and eventually controls the ΛAB .

However, as the rates are turned down, the opposite hap-

pens: λ41 is reduced much more slowly, the Weisskopf

rates become the bottleneck, and the lower band is wider

than the upper band. If we decrease the Weisskopf rates

much more, then as with 34Cl, the 1 → 2 direct transi-

tion will be favored up to higher temperatures, and the

ΛAB will be insensitive to further decreases.

We show the sensitivity of the ΛAB to selected λst in

table 2; we used the same selection criteria as with 26Al.

Similarly, we only vary by one “unit” of uncertainty,

which will avoid the bottleneck effect. We examine the

fairly narrow range of temperatures from 21-25 keV be-

cause that is the range of thermalization temperatures

found from figure 11. At all temperatures, the unmea-

sured λ43 is the largest contributor to the effective tran-

sition rate uncertainty. At T = 23 keV, the unmeasured

λ54 plays a significant role, and at T = 25 keV, the un-

measured λ65 and the measured (but uncertain) λ41 are

also important sources of uncertainty in the ΛAB .

3.4. Other s-process Astromers

To reiterate from section 3.3, the main s-process

occurs in thermally-pulsing asymptotic giant branch

(AGB) stars. The total pulsation period is ∼ 50 thou-

sand years, with a pulse temperature of T ∼ 30 keV

and an interpulse temperature of T ∼ 8 keV (Busso

et al. 1999).

All rates in this section were computed using all mea-

sured levels in each nucleus (up to 30 levels) with un-

measured γ-decay rates computed from the Weisskopf
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Figure 11. Range of 85Kr effective transition rates. Dark
bands: measured rates increased/decreased by one standard
deviation, Weisskopf rates multiplied/divided by a factor of
10. Light bands: measured rates increased/decreased by two
standard deviations, Weisskopf rates multiplied/divided by
a factor of 100.

approximation. We do not provide sensitivity studies

for these nuclei because nearly all of the intermediate

level lifetimes (and hence γ rates) along dominant tran-

sition paths are unknown, and the uncertainties in the

ΛAB are driven by the Weisskopf approximation.

The 6.31 keV isomer of 121Sn (T1/2 = 43.9 y) is more

stable than the ground state (T1/2 = 27.03 h). Un-

like other isomers considered in this work, this one de-

cays primarily to the ground state (77.6%) rather than

β decay, so Λ21 always exceeds Λ2β . However, figure

12 shows that Λ12 doesn’t catch up to Λ1β until tem-

perature T ∼ 20 keV, making this an astromer in the

interpulse periods of the main s-process. Moreover, the

long half-life of the astromer provides ample time for it

to capture a neutron rather than de-excite or β decay.

This would reduce the s-process production of 121Sb,
122Te, and 123Te.

Takahashi & Yokoi (1987) took advantage of the

122.845 keV isomer to compute a thermal β-decay rate

for 176Lu. We also computed the transition and β-decay

rates in this isotope; the results are in figure 13. Taka-

hashi & Yokoi (1987) performed a very careful calcu-

lation, but two of their temperature points (0.05 and

0.1 GK) fall in the range where the two states should

be treated as separate species. Furthermore, 176Lu is

made in the main s-process, and the ∼ 10 keV ther-



12

Table 2. Most-uncertain individual transitions in the dom-
inant pathways through 85Kr. The type column indicates
whether this spontaneous transition rate comes from ex-
periment (Exp) or the Weisskopf approximation (W). The
column labeled Fraction shows what fraction of the effec-
tive transitions flow through paths containing the individual
transition (or its reverse). Variation is an estimate of the un-
certainty; we use the published uncertainty for experimental
rates and a factor of 10 for Weisskopf rates. The last column
shows the fractional change in effective transition rates when
the individual rate is adjusted up and down by one “unit” of
uncertainty.

T Trans Type Fraction Variation Impact

21 3→ 2 W 0.0605 ×10 0.9995–1.0001

4→ 1 Exp 0.0698 -40,+80% 0.9901–1.0085

4→ 3 W 0.0605 ×10 0.9492–1.1517

5→ 2 W 0.0047 ×10 1.0

5→ 4 W 0.0047 ×10 0.9965–1.0301

6→ 2 Exp 0.0047 -17,+25% 0.9995–1.0007

6→ 4 W 0.0084 ×10 0.9962–1.0015

23 3→ 2 W 0.5725 ×10 0.9941–1.0006

4→ 1 Exp 0.6797 -40,+80% 0.8964–1.0907

4→ 3 W 0.5725 ×10 0.5248–2.3960

5→ 2 W 0.0487 ×10 1.0

5→ 4 W 0.0487 ×10 0.9633–1.3098

6→ 2 Exp 0.0585 -17,+25% 0.9938–1.0087

6→ 4 W 0.1051 ×10 0.9506–1.0200

25 3→ 2 W 0.7312 ×10 0.9914–1.0009

4→ 1 Exp 0.9219 -40,+80% 0.8526–1.1312

4→ 3 W 0.7312 ×10 0.4008–2.7348

5→ 2 W 0.0971 ×10 1.0

5→ 4 W 0.0671 ×10 0.9490–1.4223

6→ 2 Exp 0.0936 -17,+25% 0.9900–1.0139

6→ 4 W 0.1979 ×10 0.9174–1.0335

6→ 5 W 0.0300 ×10 0.9822–1.1087

malization temperature implies its isomer could be an

astromer during the main s-process interpulse periods.

3.5. r-process Astromers

All rates in this section were computed using all mea-

sured levels in each nucleus (up to 30 levels) with un-

measured γ-decay rates computed from the Weisskopf

approximation. We do not provide sensitivity studies

for these nuclei because nearly all of the intermediate

level lifetimes (and hence γ rates) are unknown, and

the uncertainties in the ΛAB are driven entirely by the

Weisskopf approximation.

Isomers may play an important role in the rapid neu-

tron capture process (r-process). Fujimoto & Hashimoto

(2020) identified nine nuclei with isomers that could
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Figure 12. 121Sn transition and β-decay rates. The lines
are as in figure 6.
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Figure 13. 176Lu transition and β-decay rates. The lines
are as in figure 6.

affect the light curve of a post-neutron-star-merger

kilonova, four of which were particularly impactful:
123,125,127Sn with isomers at 24.6, 27.50, and 5.07 keV

respectively, and 128Sb with an isomer of unknown en-

ergy. Figures 14, 15, and 16 show the transition and

β-decay rates for the Sn isotopes. Indeed, each of these
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Figure 14. 123Sn transition and β-decay rates. The lines
are as in figure 6.
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Figure 15. 125Sn transition and β-decay rates. The lines
are as in figure 6.

thermalizes at T ≈ 25 keV, well above the expected am-

bient temperature when the isotopes are populated in

such environments. The disparity between the ground

state and isomer β-decay rates could have a marked im-

pact on the radioactive heating as nuclei decay back to

stability, so further investigation is in order.
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Figure 16. 127Sn transition and β-decay rates. The lines
are as in figure 6.

The fourth isotope identified by Fujimoto &

Hashimoto (2020), 128Sb, suffers from incomplete data.

The rates are shown in figure 17, but it does not ther-

malize within the computed temperature range. This

is almost certainly due to missing data in the excited

states. The ground state has spin and parity Jπ = 8−,

the isomer has Jπ = 5+, and all other measured states

have J <= 4. Furthermore, the isomer has unknown

energy (we take the likely upper bound of 20 keV), and

all other excited states have energies measured with re-

spect to that unknown energy (Elekes & Timar 2015).

Because this is such a potentially important nucleus,

closer investigation is warranted. If the isomer is indeed

influential, this would motivate experiments to measure

the excited state properties.
182Hf is a cosmochronometer that may be produced in

the s-process (Lugaro et al. 2014) or the r-process (Wu

et al. 2019). It has an isomer at 1172.87 keV; figure 18

shows the rates for this isotope. Although 182Hf ther-

malizes at a fairly low T ≈ 6 keV and is therefore not an

s-process astromer, this is nevertheless higher than the

expected temperature at which it would be produced

in some r-process events; the two-minute β-decay half

life of 182Lu likely implies that a rapid neutron capture

event would have adequate time to cool. However, 182Lu

β decay exclusively feeds the 182Hf ground state ensem-

ble (Kirchner et al. 1982). With this information we

conclude that the 182Hf isomer does not affect the γ-ray

signal predicted by Wu et al. (2019).
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Figure 17. 128Sb transition and β-decay rates. The lines
are as in figure 6.
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Figure 18. 182Hf transition and β-decay rates. The lines
are as in figure 6.

Finally, we raise the interesting case of 170Ho. This

nuclide has only two measured levels: the ground state

with Jπ = 6+ and a β-decay half life of 2.76 minutes, and

a 120 keV isomer with Jπ = 1+ and a β-decay half life of

43 seconds. We anticipate that this difference in decay

rates could affect energy generation in an r-process event

with observable effects in the light curve of a kilonova.
170Ho is produced by β decay of 170Dy, but the parent β-

decay intensities are unmeasured. However, the parent

ground state has Jπ = 0+, so it likely decays predomi-

nantly to the 170Ho isomer. This fact—coupled with the

lack of data on 170Ho excited states (which greatly hin-

ders estimating the ΛAB), the computed abundance of

A = 170 nuclei (Sprouse et al. 2020; Vassh et al. 2020),

and the potential kilonova implications—motivates ex-

perimental examination of this pair of nuclei.

3.6. Other Cases

We show here two examples of isomers which look

promising as astromers but for which we are unaware

of any environments where they may behave as such.

We computed unmeasured γ-decay rates using the Weis-

skopf approximation.
58Mn is an important antineutrino source in pre-

supernova stellar cores (Patton et al. 2017), and it has

an isomer at 71.77 keV. We computed effective tran-

sition and β-decay rates using the lowest 30 measured

levels. As shown in figure 19, 58Mn thermalizes at T < 5

keV, far below the pre-supernova core temperatures of

300− 900 keV, so it is not an astromer in this environ-

ment. Nevertheless, there is a point to be made about

this isomer. Because 58Mn is such a prodigious antineu-

trino source (with consequences for pre-supernova detec-

tion), we naturally desire precise weak interaction rates.

In most cases, we must rely entirely on theory for the

weak interaction strengths of excited states, but the ex-

istence of a low-lying isomer gives precise experimental

data that reduces uncertainties in the high-temperature

weak interaction rates of 58Mn.
113Cd has a 14.1 year isomer at 263.54 keV that nearly

always β decays (Blachot 2010). Because it lies on the

s-process path and the isomer β-decay rate could make

it a branch point, it is worth taking a closer look at. We

computed effective transition rates and β-decay rates in
113Cd using the 30 lowest measured energy levels; our

results are shown in figure 20.

The 113Cd rates are qualitatively similar to 85Kr in

that Λ21 overtakes Λ2β at a lower temperature than Λ12

exceeds Λ1β with similar consequences for the β-decay

rates. The major difference is that the thermalization

temperature for 113Cd is only ∼ 5 keV. This is below any

s-process temperatures, so this isomer is likely never an

s-process astromer.

Of course, as with 58Mn, the existence of the isomer

means that we have a precise measurement of the β-

decay rate for the first excited state in this nucleus, pro-

viding a more precise value of the thermal β-decay rate

for this species. Also, if there exists an environment
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Figure 19. 58Mn transition and β-decay rates. The lines
are as in figure 6.
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Figure 20. 113Cd transition and β-decay rates. The lines
are as in figure 6.

where the isomer is produced at a cooler temperature,
113Cd that is produced in the ground state will remain

nearly stable, but that produced in the isomer will de-

cay to 113In. However, we are unaware of any specific

astrophysical environments where this would play a role,

since 113Ag—the 113Cd β decay parent produced in the

r-process—essentially always decays to the ground state

ensemble.

4. DISCUSSION AND CONCLUSIONS

We have developed an effective means of computing

thermally driven transition rates between the ground

state and long-lived isomers in atomic nuclei. We fo-

cus on the case of a single isomer, but generalization to

multiple isomers is straightforward by simply including

more endpoint states that obey all of our well-defined

rules. Our technique does not rely on any physical as-

sumptions apart from the assumption of a thermal pho-

ton bath, and, as discussed below, even this can be re-

laxed. While the technique itself is uncomplicated, we

have extensively and rigorously proved its validity, in-

cluding developing a detailed means of analyzing which

transitions are important at a given temperature.

Although we developed our method independently

from Gupta & Meyer (2001), our computed rates will be

numerically similar to calculations using the technique

of that work because we ultimately arrive at similar con-

clusions. Nevertheless, ours has some advantages. First,

whereas Gupta & Meyer (2001) assume that intermedi-

ate states equilibrate essentially instantaneously, we do

not rely on physical assumptions. Second, we do not

use a Taylor expansion to solve equation 9; a solution

always exists, and a linear equation solver will quickly

find it. This eliminates any concern about including

enough terms of the expansion for any nucleus at any

temperature.

We do, however, owe a great debt to Gupta & Meyer

(2001) for our calculations of ensemble β-decay rates.

While these rely on the assumption of fast equilibra-

tion of intermediate states, it is in general a very good

assumption, and their method of assigning ensemble

weights to the intermediate states is a powerful way to

accurately break the nucleus into two species for nucle-

osynthesis network calculations.

We have applied our methods to several interesting

nuclei, and we used the formulation of Gupta & Meyer

(2001) and Misch et al. (2018) to compute β-decay rates

for these nuclei, treating the ground state and isomers as

separate species. For most of our case studies, we find

that for a given set of destruction rates (in this case,

β decay, though it applies to all destruction channels)

there is a clear “thermalization temperature”. Above

this temperature, the nuclear levels may be assumed

to be in thermal equilibrium, and below it, the iso-

tope should be treated as two independent species: the

ground state and an astromer. We summarize in Table

3 the astrophysically relevant nuclear isomers studied in

this work.
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We have shown that the isomers in 121,123,125,127Sn,
128Sb, and 176Lu have high thermalization tempera-

tures relative to the environments where they are cre-

ated. Our results reinforce the claim by Fujimoto &

Hashimoto (2020) that some of these isomers play im-

portant roles in the r-process and show that there may

be impact from astromers on the s-process. We have

also identified 170Ho as another potentially impactful r-

process astromer. These findings motivate more detailed

study of astromers in nucleosynthesis.

We find that there is currently insufficient data on

the excited states of 128Sb and 170Ho to compute tran-

sition rates and thermalization temperatures. This lack

of data and their probable importance in the r-process

highlights a need for experimental inquiry into their ex-

cited state properties. Additionally, we have shown that

uncertainties in individual intermediate state transitions

can dramatically influence the effective transition rates

and thermalization temperatures. The success of precise

measurements of 34Cl transitions in producing precise

effective transition rates demonstrates the value of mea-

suring the unknown transitions in nuclei with isomers.

Our calculations have focused on β decay, but the en-

semble destruction rates can be just as readily computed

for any other destruction channel. We must simply rec-

ognize that a fast destruction rate will tend to raise the

thermalization temperature. For example, an isomer

which decays solely via internal transition to the ground

state will thermalize under most conditions. But if the

isomer has a very different neutron capture cross section

from the ground state, it may fall out of equilibrium in

the r-process, ultimately affecting nuclear flow.

Another concern is the “feeding factors” of the ground

state and isomer during production; that is, for a given

production channel and environment, what fraction of

the material goes to which ensemble. For example, con-

sider the 26Al rates shown in figure 6. Assume for the

sake of argument that we produce this nucleus at T = 10

keV with a 50/50 split of ground state and isomer. Be-

fore an appreciable population of the species has had

a chance to build up, we would measure an instanta-

neous effective beta-decay rate for the species that is

the average of the ground state and isomer decay rates.

However, as time goes on, a population of the ground

state will build up while the isomer decays away. When

we again measure the instantaneous effective beta-decay

rate, it will be skewed toward the ground state rate be-

cause the ground state will have a greater population.

We therefore see that the species effective beta-decay

rate can be time-dependent irrespective of production

mechanism.

Of course, the PiE for the states where the isotope is

produced are the feeding factors into the ground and iso-

meric ensembles. Consider 26Al produced by 25Mg(p,γ).

In this reaction, the initial states of 26Al are a small

handful of resonant levels above the proton separation

energy of 6306.31 keV. If we can reliably calculate the

PiE for these states, we will know how much material

lands in each of the isomer and ground state. The

same is true for the daughter levels in 84Kr(n,γ)85Kr,
170Dy(β)170Ho, and so on.

It’s also important to note that while many of the

finer details (path reversibility, etc.) rely on a thermal

bath, the general method of computing effective isomer

↔ ground state transitions does not. As long as λst and

λts are measured or calculable for every relevant pair of

states s and t, we may use equation 9 to compute the

effective transition rates. This may have applications

when nuclei with isomers are exposed to non-thermal

sources of radiation. In this vein, our method applies to

random walks through any general weighted network of

connected nodes where you wish to get from node A to

node B without going through node C (or D, E, etc.)

Here the nodes are nuclear levels and the connections

are internal nuclear transitions.

A nuclear isomer has astrophysical consequences and

is hence an “astromer” below the thermalization temper-

ature. This temperature is sensitive to the various de-

struction rates that the nuclear species faces, with rapid

rates increasing the temperature, thereby widening the

range of conditions for which a metastable state is an

astromer. At sufficiently high temperatures, the transi-

tion rates dominate the destruction rates, the astromer

property fades, and the isotope may be considered a sin-

gle species.

5. SUPPORTING DATA

We provide ASCII formatted data files in a .tar.gz

package containing the effective transition and weak-

interaction rates for the isotopes presented in this pa-

per. The rates are compiled into two data files for each

isotope (one for the ground state and one for the iso-

mer) along with relevant metadata, including publica-

tion data, the nuclear level energy, the assumed density

of the environment, and descriptions of the columns.

We always take ρYe = 105 g/cm3, which should be ade-

quate for most environments where electrons are not de-

generate and electron capture is not the dominant weak

interaction. We also provide the rates from our sensitiv-

ity studies of 26Al and 85Kr. This data is intended for

unlimited release under Los Alamos report LA-UR-20-

26010.
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Table 3. Summary of data for nuclei in this paper. The column headers use g and m as shorthand for the ground state and isomer,
respectively. The state number (starting with ground ng = 1) of the isomer is nm = 2 for all nuclei except 182Hf, which has nm = 10.
The isomer energy is Em, and the Jπ are the spin and parity of the respective levels (parentheses denote uncertain Jπ). The half-lives
(T1/2) and β-decay branching for the isomer (Bmβ) are as measured in the laboratory; Bmβ is the percent of isomer decays which are
β decays rather than internal transitions to another nuclear state. The column # States tells how many measured levels we included
in our calculations, and our computed approximate thermalization temperature is indicated by Ttherm. The Site column indicates the
astrophysical site of interest. Notes highlights important points about available data; specific states or ranges of states are deemed
relevant from our pathfinding in that nucleus.

Isotope Em Jπg Jπm T1/2, g T1/2, m Bmβ # States Ttherm Site1 Notes

(keV) (s) (s) (%) (keV)

26Al 228.31 5+ 0+ 2.26× 1013 6.35× 100 100 67 35 p λ32, λ43 unmeasured
34Cl 146.36 0+ 3+ 1.53× 100 1.92× 103 55 30 20 Sne λ32 poorly constrained
58Mn 71.77 1+ 4+ 3.00× 100 6.54× 101 90 30 5 PSne λij unmeasured for 3-7
85Kr 304.87 9/2+ 1/2− 3.39× 108 1.61× 104 78.8 30 25 s λij poorly measured for 3-7
113Cd 263.54 1/2+ 11/2− 2.54× 1023 4.45× 108 99.86 30 5 r λ42 unmeasured
121Sn 6.31 3/2+ 11/2− 9.73× 104 1.39× 109 22.4 30 20 s, r λij unmeasured for 3-6
123Sn 24.6 11/2− 3/2+ 1.12× 107 2.4× 103 100 30 30 r λij unmeasured for 3-7
125Sn 27.50 11/2− 3/2+ 8.33× 105 5.71× 102 100 30 30 r λij unmeasured for 3-8
127Sn 5.07 11/2− 3/2+ 7.56× 103 2.48× 102 100 30 30 r λij unmeasured for 3-8
128Sb 0.0+X 8− 5+ 3.26× 104 6.25× 102 96.4 9 unknown r Em unknown; Note 2 below
170Ho 120 (6−) (1+) 1.66× 102 4.3× 101 100 2 unknown r Note 3 below
176Lu 122.845 7− 1− 1.19× 1018 1.32× 104 100 30 10 s λij unmeasured for 5-13, 16, 17
182Hf 1172.87 0+ (8−) 2.81× 1014 3.69× 103 54 30 10 s, r λij unmeasured for 2-9, 11, 12

1Astrophysical site key: p: p-process. r: r-process. s: s-process. Sne: supernovae. PSne: pre-supernovae.

2Intermediate states unmeasured.

3Em uncertain; intermediate states of 170Ho unmeasured and 170Dy β intensities unmeasured.
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APPENDIX

A. TRANSITION PATHWAYS

In determining the effect of unmeasured individual transition rates on total effective transition rates, it is helpful

to identify those paths through intermediate states which a nucleus is most likely to follow. We describe here the



18

probabilities to follow specific paths, the algorithm we employed to identify the dominant paths, and comment on the

symmetry of reverse paths.

A.1. Path Probabilities

The probability to follow a path is the product of the weights bij for each step in the path. We will show here precisely

what that means. A probability quantifies how frequently an outcome will occur from a set of possibilities, and the

probabilities must sum to unity. In discussing path probabilities, we must define the possibilities under consideration.

The first set of possibilities we discuss is not directly applicable to calculations of effective transition rates, but rather

is useful in interpreting the PiE . Consider the set of all paths of length N which begin at state i and end anywhere.

Naturally, the probabilities to follow these paths must sum to unity, since the system must end up somewhere. For

paths of length 1, we can easily see that the probability to follow each path to each final state f is bif . Those are

the individual transition probabilities, and we know that they sum over f to unity. Now consider paths of length 2:

i → j → f . We know the probabilities of the individual transitions, so we may simply multiply them, then sum the

products over all values of j and f to get a normalization factor K for the total probability.

K =
∑
j

bij
∑
f

bjf (A1)

The inner sum is unity, which implies the the total sum is unity, and the normalization factor is simply 1. Considering

paths of greater length simply extents the number of sums, and we see that paths of length N form a well-defined set

of possibilities with probabilities computed from direct multiplication of the individual transition probabilities.

Our graph represents an irreducible Markov chain (every state is reachable from every other state by at least one

path), so all states are members of a single communicating class (Gagniuc 2017). Consequently, each intermediate

state can reach A via at least one path with a finite number of steps N , and that path has positive probability with

respect to other paths of length N . This implies that with repeated transitions the probability to not have followed

a path that reaches A will decay toward zero. Thus A is recurrent, meaning the system will eventually reach A with

unit probability. Recurrence is a class property (all members of a communicating class are either recurrent or not

recurrent), so a system will eventually reach A with probability 1 and it will eventually reach every other endpoint

state with probability 1.

The PiE from section 2 quantify the probability of starting from intermediate state i and reaching endpoint E before

reaching any other endpoint. The system definitely reaches every endpoint eventually, and it must reach one of them

first; the probabilities PiE therefore sum to 1. ∑
E

PiE = 1 (A2)

Now we describe a more directly applicable set of possibilities. We are interested in starting at A, leaving to some

state s (which in principle could be B), and finding the subsequent probability to successfully transition to endpoint

state B. Again, for every state s, the sum over t of bst is unity, which combines with equation A2 to give a set of

possibilities whose probabilities sum to unity.

∑
s

(
bAs

∑
E

PsE

)
=
∑
s

bAs = 1 (A3)

In words, the set of possibilities for which we compute probabilities is paths that begin at A, terminate at an

endpoint state, and do not have any endpoint states in between. When the system leaves A, it must eventually reach

an endpoint state (equation A2), so the probabilities of all possibilities sum to 1 (equation A3). The possibilities are

also mutually exclusive (no two paths are alike), giving a well-defined set of possibilities and associated probabilities.

Iterated expansion of the PjB in equation 8 reveals that PiB is the sum over all paths of any length from i to B of

the compounded individual transition probabilities.

PiB =
∑
paths

i→j→...→k→B

bij ...bkB (A4)

Note that this includes short paths which might not have a j or k. Multiplying equation 8 by bAi gives an un-normalized

probability that when the system leaves A, it goes to i, and from there via some path that eventually leads to B, with
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the contribution of each path to that probability explicitly computable. Likewise, we may compute the un-normalized

probabilities of paths that begin at A and go to any endpoint E (including returning to A) by using the PiE . But

comparison with equation A3 shows that the sum of the compounded individual transition probabilities for all paths

that start at A and end at any endpoint is unity. In other words, the compounded individual transition probabilities

for these paths directly answer the question “When the system leaves A, what is the probability to follow a particular

path to a particular endpoint state given that the path terminates at an endpoint state?” Naturally, we may replace

A with any endpoint state.

The total effective transition rate ΛAB is ultimately the product of the rate λA at which systems leave A and the

sum of the probabilities of paths from A to B (see equation 6 in the context of the arguments in this section). Each

path A → ... → B contributes to the total effective transition rate in proportion to its probability, and we may now

ask which paths contribute the most to transition rates.

A.2. Pathfinding Algorithm

To find the most probable paths through intermediate states, we use a version of the A∗ pathfinding algorithm

(Hart et al. 1968). In its original form, A∗ finds the single path of least cost between two vertices that does not

revisit intermediate vertices on a weighted graph. The edge costs are also typically non-negative and additive. For our

purposes, each of the emphasized points requires generalizing.

The first generalization is well-known: finding the k shortest paths, rather than the single shortest (Eppstein 1998).

Although k is the standard symbol for finding multiple shortest paths, we will for the remainder of this section use N

to avoid confusion with a state labeled k.

The second generalization requires a notion of “legality”. Consider a graph which represents a geographic map,

and we are looking for routes from A to B. We would not be interested in paths that revisit vertices since it would

effectively be backtracking. We would therefore declare any paths that include revisiting to be illegal and not consider

such paths as candidates. In general, at each iteration of the algorithm described below, we would determine whether

each next increment in the path is legal according to our specific needs, then as appropriate either add it to or exclude

it from the list of candidate paths.

In the class of cases under consideration here, a physical system may meander between intermediate states—even

tracing loops in the graph—before reaching B. If we exclude paths that revisit intermediate states, we will miss the

contribution of these meanderings to the total effective transition rate. Indeed, some paths with loops may contribute

more than some direct paths. This leads to our statement of path legality: we allow any path that starts at A, ends

at B, and does not have A or B as intermediates.

The final generalization addresses how we compute cost. In the graphs considered here, the edge weights are

multiplicative probabilities. These may be converted to non-negative additive weights by taking the negative logarithm.

wij = − log(bij)

→ wij + wjk + ... = − log(bij · bjk · ...) (A5)

But this is an unnecessary step if we change the optimization criterion from “least cost” to “highest probability”. We

may just as easily compute the cumulative effect of each incremental addition to a path; we simply multiply instead

of add, and we prefer paths with higher cost (probability) instead of lower.

A∗ requires a heuristic function h(v) that estimates the cost from each vertex v to the goal (here, the goal is B).

Candidate paths are then selected according to the criterion of optimizing the computed actual cost to get to the

current vertex combined with the estimated cost to get the rest of the way to the goal. This heuristic must be

“admissible”, meaning it never overestimates the actual cost. With our multiplicative weights, our choice of heuristic

must therefore never underestimate the probability. For simplicity, we take h(v) = 1 ∀ v. In principle, we could achieve

better performance with a more intelligent choice of h(v), but we won’t worry about that here.

Finally, we describe our algorithm in detail. To find the N most probable paths from A to B, follow these steps.

1. Start an empty list of candidate paths.

2. Add to this list all possible paths of length 1 (one increment) that start at A. Using the graph in figure 1 as an

example, the list will now consist of the paths A→ i, A→ j, and A→ k.

3. Select the highest probability path from the candidate list and delete it from the list.
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Figure 21. The five most probable paths from the ground state to the isomer (top) and from the isomer to ground (bottom)
in 26Al at a temperature T = 500 keV. The paths in one direction are the reverse of the paths in the other direction.

4. If the selected path does not end at B, add to the candidate list all legal paths that are one increment farther

along and return to step 3. If, for example, the most probable candidate path is A → i, delete it from the list

and append to the list the candidates A→ i→ B, A→ i→ j, and A→ i→ k.

5. If the selected path ends at B, record it as the n-th most probable path, where n is the number of most probable

paths found so far. If N most probable paths have been found, you’re done. Otherwise, return to step 3.

It’s worth mentioning that it is in principle possible to get caught in a loop of transitions where probability decays

slowly with each iteration, and a path may traverse this loop many times before it fails to be selected in step 3. This

can be avoided if in step 4 we augment the legality condition to say that a path may not include more than N − 1

total loops. Because every path increment at best does not increase a path’s probability, we may be assured that a

path P which visits a state n times will be at least as probable as an otherwise identical path which includes a loop to

visit the state n+ 1 times. Therefore, there will be at least n− 1 paths at least as probable as P , and we may safely

reject all paths with more than N − 1 loops.

A.3. Path Symmetry

In a general weighted digraph, the optimal path from A to B is not necessarily the optimal path from B to A. But

when transitions are mediated by a thermal bath, the most probable path between two states—and hence the greatest

contributor to the transition rate—is the same in both directions. In fact, all paths maintain their relative probability

when traversed in either direction. For example, the second most probable path from A to B is the also the second

most probable path from B to A, and so on. Figure 21 illustrates this for the five most probable paths through 26Al

at temperature T = 500 keV. This is an unrealistically high temperature for 26Al production, but it nicely illustrates

the symmetry. The states are labeled in increasing order of energy starting with ground = 1 and isomer = 2. In the

figure, the most probable path (rank = 1) from ground to the isomer is 1→ 36→ 47→ 21→ 8→ 4→ 2, while from

the isomer to ground it is 2 → 4 → 8 → 21 → 47 → 36 → 1. All other ranks exhibit the same symmetry. We detail

the inputs to our calculations in section 3.1.

A stochastic process for which all paths obey the symmetry described above is known as a reversible Markov chain

(RMC), and there are at least three ways to show that nuclear energy levels with thermally mediated transitions

comprise such.

First, and most simply, a system that meets the detailed balance condition is a RMC. The detailed balance condition

is that there exists a configuration of occupation probabilities for which the transition rates between every pair of states

is the same forward and backward. That is, if we denote the occupation probability of state i as ni, there must be

some set of occupations such that niλij = njλji for all i and j (Durrett 1999). The thermal equilibrium distribution

ni ∝ (2Ji + 1)e−Ei/T satisfies this equation (c.f. equation 5), guaranteeing reversibility. Importantly, the system need

not be in this configuration; the configuration must only exist.
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Second, the specific symmetry here is directly provable, which we will do presently. Third, by a trivial extension of

the direct proof, we can show that thermally mediated transitions satisfy Kolmogorov’s criterion, which states that a

Markov chain is reversible if for every closed loop, the probability to follow the loop is the same in both directions

(Kelly 2011).

To directly prove path reversal symmetry, we begin with the probability pAi...jB that a transition out of state A

follows the path A→ i→ ...→ j → B.

pAi...jB = bAi · bi... · ... · b...j · bjB (A6)

Rewrite the bs terms of λs.

pAi...jB =
λAi
λA
· λi...
λi
· ... · λ...j

λ...
· λjB
λj

(A7)

We use equation 5 to reverse the indices of the numerators, using gs ≡ 2Js + 1 for brevity.

pAi...jB =

(
gi
gA
e

EA−Ei
T

λiA
λA

)(
g...
gi
e

Ei−E...
T

λ...i
λi

)
× ...×

(
gj
g...

e
E...−Ej

T
λj...
λ...

)(
gB
gj
e

Ej−EB
T

λBj
λj

)
(A8)

The exponents contain a collapsing sum, and the gs6=A,B all cancel, yielding

pAi...jB =
gB
gA
e

EA−EB
T

λiA
λA
· λ...i
λi
· ... · λj...

λ...
· λBj
λj

. (A9)

We now multiply by λB

λB
and shift all of the numerators to the right.

pAi...jB =
gB
gA
e

EA−EB
T × 1

λA
· λiA
λi
· λ...i
λ...
· ... · λj...

λj
· λBj
λB
· λB (A10)

Rewrite the λs in terms of bs.

pAi...jB =
gB
gA
e

EA−EB
T

λB
λA

biA · b...i · ... · bj... · bBj (A11)

Finally, we recognize that this product of bs is the reverse path probability.

pAi...jB =
gB
gA
e

EA−EB
T

λB
λA

pBj...iA (A12)

The factor relating the forward and reverse path probabilities is path independent, and depends only on temperature

and the properties of the endpoint states. Therefore, the fractional contribution of each path to transition rates from

endpoint to endpoint is the same forward and backward; if a path contributes 10% of the rate from ground to isomer,

then it contributes 10% of the rate from isomer to ground. Reversal factors which are not equal to unity imply that

one endpoint state or the other is more likely to fail to transition, returning to its starting point.

To demonstrate satisfaction of Kolmogorov’s criterion, we need only set A = B in the direct proof. Since the proof

does not rely on any special properties of A and B (e.g. longevity), A and B may be taken to be arbitrary and equal.

Then, per equation A12, the reverse probability is identical to the forward probability for all closed loops.

As a final point, the rate to follow a particular path starting at endpoint E is the product of the rate to leave E

and the probability to follow that path. That is, λpath = λE ppath. Note from equation A12 that the rates to follow

each path in the forward and reverse directions obey the same relationship as the direct transition rates in equation

5. Summing over all paths from A to B leads us to conclude that effective transition rates between endpoint states

exhibit the thermal relationship.

ΛAB =
gB
gA
e

EA−EB
T ΛBA (A13)

This result is not surprising given an intuition of detailed balance, but it is nevertheless useful to have it made

explicit and to observe that it does not require the nuclear levels to be in a thermal equilibrium distribution. Indeed,

relying on methods that do not include path reversal symmetry can lead to erroneous results. Reifarth et al. (2018)

made the seemingly reasonable assumption that all dominant paths consist of one up transition from a long-lived state

followed by a cascade of down transitions through intermediate states; this is justified by the fact that down transitions
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are much faster than up transitions and therefore dominate the de-excitation of intermediate states. However, from

the present analysis and figure 4, we see that at temperature T = 35 keV this misses the single greatest contributing

path (1→ 3→ 4→ 2) from the ground state to the isomer in 26Al; the consequence is a drastic underestimate of the

effective transition rate in an important temperature range.
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