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The Rare-RI Ring (R3) is a recently commissioned cyclotron-like storage ring mass spectrometer
dedicated to mass measurements of exotic nuclei far from stability at Radioactive Isotope Beam
Factory (RIBF) in RIKEN. The first application of mass measurement using the R3 mass spectrom-
eter at RIBF is reported. Rare isotopes produced at RIBF, 127Sn, 126In, 125Cd, 124Ag, 123Pd, were
injected in R3. Masses of 126In, 125Cd, and 123Pd were measured and the mass uncertainty of 123Pd
was improved. The impact of the new 123Pd result on the solar r-process abundances in a neutron
star merger event is investigated by performing reaction network calculations of 20 trajectories with
varying electron fraction Ye. It is found that the neutron capture cross section on 123Pd increases
by a factor of 2.2 and β-delayed neutron emission probability, P1n, of 123Rh increases by 14%. The
neutron capture cross section on 122Pd decreases by a factor of 2.6 leading to pileup of material at
A = 122, thus reproducing the trend of the solar r-process abundances. Furthermore, the nuclear
deformation predicted to reach its maximum before N = 82 in the Pd isotopic chain is examined.
The new mass measurement shows no evidence of such large deformation, though, experimental
uncertainty should be further improved to draw a definitive conclusion. This is the first reported
measurement with a new storage ring mass spectrometery technique realized at a heavy-ion cy-
clotron and employing individual injection of the pre-identified rare nuclei. The latter is essential
for the future mass measurements of the rarest isotopes produced at RIBF.

The discovery of the historical GW170817 event of
binary neutron stars merger and the subsequent kilo-
nova AT2017go [1] for the GW170817 [2] was a major
milestone toward revealing the secret of the synthesis of
heavy elements via the rapid neutron capture process (r-
process)[3]. The recent identification of strontium in the
kilonova radiation gave a strong evidence of the produc-
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tion of r-process elements [4]. However, modeling of the
accretion disk formed in supernova-triggered collapse of
rapidly rotating massive stars or collapsars, showed that
r-process elements could be also produced in considerable
amounts [5]. The presence of r-process heavy elements
was also observed in the dwarf galaxy Reticulum II [6],
where the accretion disk of collapsars might be the main
source of production. Recent studies suggest that heavy
elements might be synthesized in three different sites
based on observations of low metallicity stars [7], char-
acterized by three types of patterns, a weak r-process,
a strong solar-type r-process, and an actinide boosted
r-process. To model the formation of heavy chemical el-
ements under different astrophysical conditions, a large
and diverse amount of nuclear data is needed, especially
for neutron-rich nuclei that live for a fraction of a second.
Nuclear masses are important ingredients since they re-
flect the neutron separation energies, which are required
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FIG. 1. (a) Configuration of the detectors installed in the beam line and Rare RI Ring (R3). (b) The revolution time spectrum
for the 5 nuclei.

for the determination of neutron capture rates and pho-
todissociation rates [3, 8, 9]. A vast number of neutron-
rich nuclei involved in the r-process can now be produced
in the laboratory at rare isotope facilities and their prop-
erties measured with high precision. However, all nuclei
needed for modelling the r-process will not be accessi-
ble even at the new-generation radioactive-ion beam fa-
cilities. A robust model based on accurate properties
of neutron-rich nuclei is thus essential to reveal the as-
trophysical conditions in which heavy elements could be
produced. Such a model will help quantify the produc-
tion rates in various sites, which will result in more ac-
curate galactic chemical evolution calculations capable of
reproducing the r-process elements’ chemical abundances
[10, 11].

This Letter reports precision mass measurements of
neutron-rich nuclei produced at the Radioactive Isotope
Beam Factory (RIBF) and their implication in the pro-
duction of r-process elements with atomic mass num-
ber A=122 and A=123. Mass measurements of nuclei
with neutron number N=77 were performed for the first
time with a new type of mass spectrometer, namely
the Rare-RI Ring (R3), recently commissioned at the
RIBF/RIKEN facility [12]. We examine the implication
of the 123Pd mass on the abundance calculation for a neu-
tron star merger event. These first mass measurements
at RIBF of neutron-rich isotopes in a remote region of the
nuclear chart open a door to reaching r-process nuclei at
N=82 and beyond.

In the experiment, the secondary beam was produced

by in-flight-fission of the 345 MeV/u 238U beam provided
by the Superconducting Ring Cyclotron (SRC) impinged
on the 6 mm thick beryllium target which was placed up-
stream of the BigRIPS separator at F0 focal plane (see
Fig. 1). The secondary fragments of interest were sep-
arated by the first stage of the BigRIPS as described in
[13]. For this purpose, a 5 mm wedge-shaped degrader
was introduced at the F1 focal plane of the BigRIPS.
The magnetic rigidity Bρ and the transmission efficiency
were optimized for the reference particle 124Ag. The mo-
mentum selection was done by setting the slits at F1 to
±2 mm, corresponding to the R3 momentum acceptance
of ±0.3%. The injection kicker magnets system placed
inside the R3 is limited to a repetition rate of 100 Hz.
Therefore, to accept the quasi-continuous beam from the
SRC, the individual self-injected trigger technique was
developed for injecting pre-identified particles of inter-
est [14]. The particle identification (PID) was achieved
by the ∆E-TOF method in the beam line, where ∆E is
the energy loss measured by the ionization chamber (IC)
placed at F3 and TOF is the time-of-flight measured by
the plastic scintillator at F3 and the E-MCP detector [15]
at S0 of the SHARAQ spectrometer. Also a 2-mm thick
plastic scintillator was placed after the IC at F3 to get a
rough ∆E information needed for removing contamina-
tions [16]. Two position monitors PPACs (Parallel Plate
Avalanche Counter) were installed at F3 to monitor the
beam size and two double PPACs were installed at F5
which is a dispersive focal plane to measure Bρ of ev-
ery individual particle prior to its injection into the R3.
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The particle circulates in the R3 for about 1800 revolu-
tions before it is ejected from the ring. The total TOF
in the R3 was measured by the E-MCP detector at S0
and a plastic scintillator detector placed at ELC after the
ejection from the R3. Another IC was installed at ELC,
where an additional PID was performed. Finally, parti-
cles were stopped in the NaI scintillator detector placed
behind the IC at ELC.

The mass-to-charge ratio (m/q) of the particle of in-
terest with a revolution time T is determined relative
to a reference particle with m0/q0 and T0 by using the
following formula [12, 17]:

m

q
=
m0

q0

T

T0

√√√√ 1− β2

1−
(

T
T0
β2
) , (1)

where β is the velocity of the particle of interest relative
to the speed of the light in vacuum. Revolution time
spectrum of all injected nuclei is shown in Fig. 1 (b) (de-
tails of determination of the revolution time in R3 can be
found in [18]). Since the isochronous condition of the ring
is optimized for the reference particle, T0 is independent
of the momentum. To determine the mass, the velocity
β needs to be determined event-by-event from the time-
of-flight along the beamline from F3 to S0 (TOF3S0) by
using the following equation,

β =
Length3S0

(TOF3S0 + TOFoffset)
. (2)

The average path length from F3 to S0 (Length3S0)
and the TOFoffset caused by the electronics and the
energy loss in the detectors on the beamline, are de-
termined via Eq.(2) by using known masses of 124Ag
and 127Sn. The parameters that could reproduce the
known m/q values are Length3S0 = 84.859(2) m and
TOFoffset = 325.47(1) ns. The mass is then determined
for each event via Eq.(1). Additional systematic uncer-
tainties, σsys, due to the determination of parameters
such as Length3S0, TOFoffset and T0 were estimated
and reported in Table I. Details of data analysis method
can be found in references [12, 18]. The full data analysis
method as well as the details of estimating the system-
atic uncertainties will be reported in a subsequent publi-
cation. The mass excess values determined for all nuclei
are listed in Table I. Comparison with literature values
from the recent Atomic Mass Evaluation, AME2020 [19],
are plotted in Fig. 2. As shown in Table I, the uncertain-
ties are dominated by the mass uncertainty of the refer-
ence particle 124Ag at 250 keV. The choice of 124Ag as a
reference instead of 125Cd, which has lower uncertainty,
is mainly due to the presence of a long-lived isomeric
state at 186 keV in the latter that is difficult to separate
with R3. The mass precision was therefore scarified for
higher accuracy. However, if the mass of 124Ag is remea-
sured with higher precision, the uncertainties of all other
masses will be reduced.

In Fig. 3, the two neutron separation energies (S2n) are
shown with the updated value for the most neutron-rich

TABLE I. Mass excess from literature and the mass excess
of nuclei measured in this work are shown in the second and
third column, respectively. Total uncertainties are shown as
well as the contribution from the reference mass uncertainty
σm0 and the statistical uncertainty σstat. The systematic un-
certainty σsys is estimated from the uncertainty of T0 and the
fit parameters Length3S0 and TOFoffset of Eq.(2).

Nucleus MEAME20 MER3 σtotal σm0 σstat σsys

[keV] [keV] [keV] [keV] [keV] [keV]

126In -77809(4) -77707 269 254 65 62
125Cd -73348.1(29) -73237 320 252 192 40
123Pd -60430(790) -60282 265 248 86 40
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FIG. 2. Mass excess values of nuclei measured at R3 com-
pared to literature values from AME2020 [19]

Pd isotope at N=77. Nuclear shape deformation before
the magic number N=82 was predicted by several models
[20–23]. The deformation in this mass region is believed
to affect the r-process abundances before the rise of the
A=130 peak. Failure to produce enough material in the
A=120 region by several models was thought to be due
to the shell quenching at N=82 [23]. However, better
description of the deformation in recent nuclear models
led to more accurate reproduction of the r-process abun-
dances before A=130 [24]. The increase in S2n values
can be a signature of such deformation. As can be seen
in Fig. 3, the FRDM predicts that nuclear deformation
reaches its maximum at the Pd isotopic chain. The new
S2n value of 123Pd shows a smooth decrease following
the trend of the mass surface. Due to still relatively
large uncertainty of our mass value, the presence of the
deformation cannot be excluded. Based on the estima-
tion of our systematic uncertainties, the mass uncertainty
could be reduced to about 100 keV if the mass of 124Ag
is remeasured with a precision of less than 30 keV. It
should be noted that the FRDM overestimates the size
of the deformation in the Cd isotopic chain, especially
when approaching N=82. Based on experimental masses
of Cd isotopes, the deformation in the Ag and Pd iso-
topic chains might not be as large as that predicted by
the FRDM.

We simulate the impact of the mass measurement of
123Pd in the astrophysical r-process by employing the
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Portable Routines for Integrated nucleoSynthesis Model-
ing (PRISM) reaction network [25, 26]. The baseline nu-
clear physics properties are simulated with FRDM2012
[20, 27–30]. The mass of 123Pd in the baseline model
is also taken from the FRDM2012. Changes to the mass
propagate to cross sections and branching ratios in neigh-
boring nuclei as in [9]. We find that the changes in the
capture cross sections, and β-delayed neutron probabili-
ties (discussed below) are significant in contrast to other
works which do not include these effects [31].
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FIG. 4. The local impact (red) of the 123Pd mass measure-
ment when simulated in the r-process. The baseline calcula-
tion is shown in grey and the solar r-process residuals in black
[32].

Since there are uncertainties in the astrophysical con-
ditions that could produce nuclei in the mass A ∼ 120
range, we simulate a set of 20 trajectories with vary-
ing neutron-richness from electron fraction of Ye = 0.15
to Ye = 0.35 chosen using a procedure similar to that
described in [33]. Figure 4 shows the impact of 123Pd

when combining all trajectories together in a weighted
sum that best matches the solar r-process residuals. We
find that the neutron capture cross section for 122Pd de-
creases by a factor of 2.6 and for 123Pd increases by a
factor of 2.2, while the P1n value, probability for the
β-delayed neutron emission, of 123Rh increases by 14%
with the updated mass, resulting in an effective pileup
of material along the A = 122 isobar relative to the
baseline. Some conditions enhance this effect, notably
Ye = 0.28 (F = 0.61), Ye = 0.29 (F = 1.88), Ye = 0.30
(F = 1.41), Ye = 0.31 (F = 0.99), Ye = 0.32 (F = 0.61)
with F defined as in [34]. As a conclusion, for these con-
ditions there is a larger flow through the 123Pd nucleus,
see also the discussion in [35]. The average impact factor
is 〈F 〉 = 0.247, indicating a local change in the abun-
dances, in line with the prediction of sensitivity studies
[34].

In summary, the first application of mass measure-
ments performed by the Rare-RI Ring at the RIBF facil-
ity is reported. The most neutron-rich nuclei below the
doubly magic nucleus 132Sn were studied, proving the
feasibility for mass measurements of r-process nuclei at
N=82. The present uncertainty of our measurement can
be reduced if the reference mass of 124Ag is remeasured
with higher precision, which will result in a firm conclu-
sion about the presence of nuclear deformation in the Pd
isotopic chain. We performed calculations to estimate
the impact of the 123Pd mass measured in the r-process.
We found if our new mass value is used instead of the
FRDM value the solar r-process abundances at A=122
and A=123 are modified, resulting in a better reproduc-
tion of the trend in the abundance at these masses. This
indicates that the r-process calculations are very sensi-
tive to masses in this region since a change of 123Pd mass
by just 478keV causes a sizeable effect. This finding high-
light the need for high precision mass measurements to
address the r-process in this mass region.
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