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In the study of nuclear cross sections, the computational demands of data assimilation methods
can become prohibitive when dealing with large data sets. We have developed a novel variant of
the data thinning algorithm, inspired by the principles of optical lensing, which effectively reduces
data volume while preserving critical information. We show how it improves fitting through a toy
problem and for several examples of total cross sections for neutron-induced reactions on rare-earth
isotopes. We demonstrate how this method can be applied as an efficient pre-processing step prior
to smoothing, significantly improving computational efficiency without compromising the quality of
uncertainty quantification.

I. INTRODUCTION

When fitting physical models to experimental data,
it is common to encounter large, and often correlated,
datasets. This poses challenges not only in terms of com-
putational cost—particularly when the models are them-
selves expensive to calculate—but also in data assimi-
lation and uncertainty quantification. To address these
issues, various data thinning techniques have been de-
veloped to reduce the volume of data used during op-
timization without significantly degrading model accu-
racy. In this paper, we introduce a novel data thinning
method inspired by optical lensing. Such data thinning
techniques are broadly applicable to challenges across
nuclear and astrophysical modeling. In nuclear physics,
evaluated data projects like ENDF/B [1] must assimilate
thousands of correlated cross-section datasets. Surrogate
reactions [2] also require efficient treatment of dense ex-
perimental data. In astrophysics, r-process nucleosyn-
thesis [3, 4], supernova modeling [5], and EOS inference
from neutron star mergers [6] are all data-intensive do-
mains where thinning methods can mitigate computa-
tional bottlenecks in uncertainty propagation and model
calibration.

The Hauser-Feshbach (HF) statistical model is used to
compute nuclear reactions on medium- to heavy-mass nu-
clei. The HF model calculates energy-averaged nuclear
reaction cross sections and incorporates a width fluctu-
ation correction for overlapping resonances. Out of the
several HF codes available on the market, including EM-
PIRE [7], TALYS [8], CCONE [9], we focus our attention
on the LANL-developed CoH3 code [10, 11]. These codes
in general handle multi-particle evaporation from a com-
pound nucleus and provide not just the reaction cross
sections, but also a wealth of information on other ob-
servables such as the energy and angular distributions
of secondary particles, γ-ray production cross sections,
and the production of isomeric states. The CoH3 code
[10, 11] integrates the coupled-channels optical model to
achieve precise nuclear reaction calculations within the
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keV to tens of MeV energy range. The CoH3 package
is structured into modules that provide a comprehen-
sive toolkit for nuclear reaction analysis: the one-body
potential mean-field theory, the coupled-channels opti-
cal model, and the HF statistical decay model, modules
that handle direct and semidirect radiative capture, pre-
equilibrium processes, and prompt fission neutron emis-
sion.

The Experimental Nuclear Reaction Data (EXFOR)
[12] database is often used to aggregate data of multiple
nuclear reaction data, which includes cross section ex-
periments. The well-known problem in such data aggre-
gation is that it neglects experimental correlations, such
as those between experiments [13]. To account for this,
an iterative generalized least-squares algorithm, the Full
Bayesian Evaluation Technique (FBET) [14, 15] was de-
veloped for nuclear data evaluation. FBET is a data as-
similation method that evaluates nuclear data at a chosen
energy grid and provides an estimate for correlated ex-
perimental uncertainties using a linearized Bayesian up-
date procedure. These experimental uncertainties rank
equally as important as uncertainties from model defects
[16]. The FBET approach to treating correlated mea-
surements is not unique to nuclear physics and belongs
to a wider class of data assimilation methods which have
been successfully applied in geophysical models [17, 18]
and industrial applications [19]. A problem often encoun-
tered in these fields is computational complexity of large
data sets needed for data assimilation. One of the solu-
tions to this problem is reducing the amount of data in a
statistically consistent way by finding an optimal subset
of data that describes the wanted quantity equally well
as the entire dataset. One class of such methods is data
thinning, which accomplishes this using either clustering
[20] or iteratively applying a selected statistic [21].

We have developed a data thinning algorithm inspired
by optical lensing to improve the analysis of cross section
data in the region with pronounced resonances. The data
for many nuclei below ∼ 1MeV is abundant, but due to
finite-energy sampling, it can often be hard to attribute
a data point to a resonance peak versus the “smooth”
underlying HF curve. While in principle, FBET can han-
dle such data, it is often impractical to apply it to large
datasets due to memory requirements. We propose our
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lensing method as a pre-processing step in order to iden-
tify the most impactful data points in a measurement set.

We describe the FBET approach, the CoH3 code, and
present the percentile-based and KDE-based data thin-
ning methods in sections IIA and IIB. In Sec. IV,
we then describe the testing of the lensing method and
present our results in V.

II. LENSING

A. Percentile-based lensing estimates

Our lensing-inspired thinning method re-
quires binning a dataset into Nb energy bins,
[x1, x2], · · · , [xb, xb+1], · · · , [xNb

, xNb+1], and com-
puting the percentiles corresponding to the minimum,
p = 0, median, p = 50, and maximum p = 100 values of
cross sections within the bin b, yp,b. We then introduce
the likelihood:

Lb(y, σy) =
∏

p∈{0,50,100}

e
− 1

2

(
y−yp,b

σy

)2

, (1)

and find the index of the measurement from bin b that
maximizes the likelihood of bin b′, Lb′ ,

ib,b′ = argmax
xi∈[xb,xb+1]

Lb′ (yi, σyi) . (2)

The procedure is as follows. We iterate over bins b =
1, · · · , Nb and find the measurements ib,b+1. We thereby
get one measurement per bin. We then remove these
measurements from the minimization and repeat the pro-
cedure to find the measurements i′b,b+1. This procedure
can be repeated until the desired limit on the number of
measurements per bin is reached.

B. Kernel-density-based estimates

We also developed a modified version of the lensing
method from Sec. IIA that uses kernel density estimates
(KDE) of the bin b′

Kh (y | h, b′) =
∑

xj∈[xb′ ,xb′+1]

e−
(y−yi)

2

2h2

√
2πhnb′

, (3)

where nb′ is the number of measurements in the bin b′.
In this variant, the index of the measurement from bin b
that maximizes the probability density of data from bin
b′, Lb′ ,

ib,b′ = argmax
xi∈[xb,xb+1]

Kh (yi | h, b′) . (4)

This method has the advantage of taking into account
more details of the measurement values in the bin b′ and

is the limiting case of using all of the percentiles for com-
puting the likelihood Lb(y, σy).
A straightforward generalization of the KDE method

involves taking errors σy instead of a fixed bandwidth
h. This σ-based KDE lensing approach naturally adapts
the KDE method to the measurement uncertainty of each
data point, thereby preserving the probabilistic struc-
ture of the input distribution. Unlike traditional KDE
lensing, which applies a fixed kernel width regardless
of the measurement precision, the σ-based variant en-
sures that more precise data contribute sharper likelihood
features, while noisier data are appropriately smoothed.
This makes the method especially advantageous when
the data exhibit heteroscedasticity, i.e., when uncertain-
ties vary significantly across samples.

III. METHODS

Our lensing method can be used as a pre-processing
step when analyzing dense data, such as nuclear cross-
section data in the resonance region. We demonstrate
the entire procedure by applying the FBET data smooth-
ing procedure and fitting the CoH3 model. Therefore,
in sections IIIA, III B, and III C we briefly describe the
standard FBET techniques, the CoH3 optical potential
model and the bootstrap technique used for testing.

A. FBET

In nuclear data evaluation the FBET method is often
used to incorporate prior information by a linearized ap-
proximation to the Bayes rule [see, e.g., 14, for details].
The experimental nuclear cross sections ym are modeled
as functions of a random variable, y that describes cross
sections evaluated at chosen energy grid points, subject
to model M , i.e., ym = fM (y). This procedure assumes
the multivariate normal distribution for the prior values
of y:

p(y | M) = Ne−
1
2 (y−y0)

TA−1
0 (y−y0), (5)

where vector y0 is the a priori mean value of the pa-
rameter vector y, A0 is the a-priori covariance matrix
of the parameters, and N the normalization factor. By
further assuming that experimental data have uncertain-
ties described by the experimental covariance matrix B
- typically containing measurement uncertainties on the
diagonal - one obtains the posterior distribution

p(y | M) = N ′ exp
(
− 1

2
(y − y0)

TA−1
0 (y − y0) (6)

− 1

2
(f(y)− ym)TB−1(fM (y)− ym)

)
, (7)

were N ′ is a new normalization constant that absorbs
the contributions from both the prior and likelihood
terms. The procedure introduces the sensitivity matrix
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Update function
and Jacobian

values based on
current parameters

Update scaling
matrix and damp-
ing parameter

Propose param-
eter step, evalu-
ate function at
new parameters

Accept or reject pa-
rameter step based
on cost decrease

Check conver-
gence criteria

Stop if criteria met
or limits exceeded

Dµν =

{
gµν , µ = ν

0, µ ̸= ν

g(λ)µν = gµν + λDµν

δθµ = −g(λ)µν
N∑
i=1

∂νr
iri

θµn+1 =

{
θµn, χ2(θn + δθ) > χ2(θn)

θµn + δθµ, χ2(θn + δθ) < χ2(θn)

λn+1 =

{
λnλu, χ2(θn + δθ) > χ2(θn)
λn
λd

, χ2(θn + δθ) < χ2(θn)

FIG. 1: Schematic representation of the Levenberg-Marquardt procedure.

Lensing method slope intercept t(slope) P (slope) t(intercept) P (intercept) Chow’s F P (Chow’s F ) Evaluation time [ms]

Percentile-based 0.98± 0.31 2.62± 0.16 3.33 0.02 3.85 0.01 0.12 0.9965 11.62± 0.95
KDE-based 1.91± 0.09 2.20± 0.05 1.02 0.35 4.07 0.01 0.18 0.9965 150± 30
KDEσ-based 2.02± 0.09 2.21± 0.06 0.23 0.82 3.46 0.01 0.02 0.9966 148± 32

TABLE I: Comparison of linear model simulations’ statistics. The columns slope and intercept show the best-fitting
linear model parameters to a particular lensed dataset. The t-labeled columns show their respective t-statistics,
while P -labeled columns show the corresponding 2-sided P -values. The F statistic and its corresponding P -value
was computed to compare the best-fitting values to the best-fitting values of the bootstraps. The median and

standard deviation of a particular lensing method’s computation time were estimated from bootstrap simulations’
computation times.

to linearize the relationship between y1 and fM (y1) as
fM (y1) = Sy1, resulting in the following linearized esti-
mates for the mean a posteriori value y1, and the corre-
sponding a posteriori covariance matrix A1:

y1 = y0 +A0S
T (SA0S

T +B)−1(ym − fM (y0)) (8)

A1 = A0 −A0S
T (SA0S

T +B)−1SA0. (9)

The matrix A1 contains correlations between all experi-
mental data, which can then be used in the fitting pro-
cess.

B. CoH3 optical model fitting via LM algorithm

The CoH3 code computes nuclear reaction cross sec-
tions in the fast energy range, including total, shape
elastic, and direct inelastic scattering, as well as di-
rect/semidirect capture, pre-equilibrium emission, and

particle and γ-ray emission processes [11]. Impor-
tantly, CoH3 computes particle transmission coefficients
internally and does not rely on external optical model
solvers. For deformed nuclei, the code employs a coupled-
channels formalism extended with rotational and vibra-
tional models. Throughout this work, we use the global
Koning–Delaroche optical potential [22], as implemented
in CoH3, for all neutron-induced reaction calculations.

To determine the effectiveness of our data thin-
ning method, we employed a standard damped Leven-
berg–Marquardt (LM) algorithm [23] to optimize multi-
plicative scaling factors (tweaks) of the six optical model
parameters of the neutron Koning–Delaroche optical po-
tential [22]. These scaling factors tweak the real potential
depth, tOV , the imaginary surface potential depth, tOW ,
the real potential radius, tORV , the imaginary surface po-
tential radius, tORW , the real potential diffuseness, tOAV ,
and the imaginary surface potential diffuseness, tOAW .



4

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to lensing
simulated data
lensing

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to bootstrapped lensing
simulated data
bootstrap

1.0 1.5 2.0 2.5 3.0
0

100

200

300

400

500

600

700

800 slope
intercept

Percentile-based

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to lensing
simulated data
lensing

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to bootstrapped lensing
simulated data
bootstrap

1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000

1250

1500

1750 slope
intercept

KDE-based

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to lensing
simulated data
lensing

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

3

4

5

6

y

expected
Fit to bootstrapped lensing
simulated data
bootstrap

1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500 slope
intercept

KDE -based

FIG. 2: Lensing of linear model simulations (blue error bars) using the percentile-based (top row), KDE-based
(middle row) and KDEσ-based methods (bottom row). Orange points show the result of the lensing procedure (left
panels) and their boostrapped estimates (middle panels). The right panels show the histograms of the slope (green)

and intercept (red) of a linear model fitted to the bootstrap samples as well as the vertical lines marking the
prediction intervals, computed from the histograms, where dashed lines are for the best fits and shaded intervals for

the prediction intervals. Solid lines represent the non-bootstrapped best-fits.

A schematic overview of the fitting procedure is pro-
vided in Fig. 1. The fits were performed with experi-
mental total cross-section data, covering neutron energies
from approximately 0.01 MeV to 10 MeV.

The LM algorithm is an iterative nonlinear least-

squares optimizer modulated by a varying damping pa-
rameter. At each iteration, a proposed parameter up-
date is accepted or rejected based on the reduction of
the objective function, defined here as the χ2 between
the experimental data and model predictions. The fit-
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FIG. 3: Total cross section dataset and the lensed subset. The left panels display the percentile-based estimates, the
middle panels show the KDE-based estimates, and the right panels present KDE estimates incorporating

heteroscedastic errors. Black points represent the full dataset, while blue, orange, and green points indicate the
lensed subsets. Crosses denote the bootstrap estimates for the lensing bin values. The data presented is total cross

section for n+ 124Sn (top) and n+ 144Sm (bottom).

ting procedure uses the residuals r(θ) between the FBET-
smoothed data y1 and the model predictions f(θ),

r(θ) = A
−1/2
1 (y1− f(θ)) , (10)

along with the corresponding model Jacobian matrix

J = ∇T
θ r(θ) = −A

−1/2
1 ∇T

θ f(θ), (11)

to compute the parameter update step δθ via the stan-
dard Gauss–Newton formula [23, 24]:

δθ = −(JTJ)−1JT r. (12)

To quantify uncertainty in the fitted parameters, we
estimate the parameter covariance matrix Σθ using the
Cramér–Rao bound:

Σθ = (JTJ)−1. (13)

This matrix is then propagated to the model output to
obtain the cross section covariance matrix,

Σy = ∇T
θ f(θ)Σθ∇θf

T (θ). (14)

The cross section uncertainties on the predicted cross sec-
tions, σy, are defined as the square roots of the diago-
nal entries of Σy and represent one standard deviation
around the model prediction. These are used to define
confidence intervals on the energy grid:

[f(θ)− σy(θ), f(θ) + σy(θ)]. (15)

C. Bootstrap

To assess the variability and robustness of our esti-
mates, we employ the bootstrap method [25], a non-
parametric resampling technique that approximates the
sampling distribution of a statistic by repeatedly draw-
ing samples with replacement from the observed data.
This approach enables estimation of standard errors, con-
fidence intervals, and the stability of fitted parameters in
both the percentile- and kernel-density-based methods.
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FIG. 4: Same as Fig. 3, the data presented is total cross section dataset and the lensed subset for n+ 143Nd (top)
and n+ 150Nd (bottom).The left panels display the percentile-based estimates, the middle panels show the

KDE-based estimates, and the right panels present KDE estimates incorporating heteroscedastic errors. Black
points represent the full dataset, while blue, orange, and green points indicate the lensed subsets. Crosses denote the

bootstrap estimates for the lensing bin values.

D. Classical thinning

The thinning through estimation method, as described
in [21], iteratively reduces a dataset by removing the
least informative points with respect to a chosen es-
timator. The procedure is designed to preserve pre-
dictive power while reducing redundancy in large spa-
tial or multidimensional datasets. The method starts
with a dataset of N pairs of values, (xi, yi) indexed by
i ∈ P0 = {1, · · · , N}, and a kernel regression estima-
tor ŷ(x, S), that takes a subset S ⊂ P0 and evaluates a
chosen kernel Kh for a particular point, x:

ŷ(x, S) =

∑
j∈S

Kh(x, xj)yj∑
j∈S

Kh(x, xj)
, (16)

where Kh is the Gaussian kernel symmetric kernel func-
tion with bandwidth h:

Kh(x, x
′) = exp

(
−∥x− x′∥2

2h2

)
. (17)

For each point i the associated mean squared error,
e(x, S) is computed

e(xi, S) = (yi − ŷ(xi, S))
2
. (18)

The algorithm computes e(xi, P0 \ {i}) for all i ∈ P0 and
proceeds by ranking the points based on e(xi, P0\{i}) for
all i ∈ P0 and removes the point with the smallest error,
yielding a subset P1. The procedure is then iterated, for
a step k the expression can be written as

Pk+1 = Pk \ argmin
i∈Pk

(e(xi, Pk \ {i})) (19)

This process continues until a desired target mean
squared error is reached. The resulting reduced dataset
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FIG. 5: The reduced 124Sn datasets and the corresponding CoH3 model fits for the total cross section channel. Left
panel shows the lensed and thinned data for 124Sn, while the right panel shows the FBET-smoothed lensed data and

the FBET-smoothed thinned data. The black dots show the FBET smoothing applied to the entire dataset.

Pk retains the key predictive characteristics of P0 while
substantially reducing its size.

IV. TESTING ON SIMULATED DATA

We demonstrate our method on simulated data taken
from a normal distribution, following a linear model with
heteroscedastic, uncorrelated errors. To this end, we con-
structed a random sample of a linear model with set val-
ues of slope and intercept, computed the fit of a linear
model to the lensed subsample, and estimated the relia-
bility of these fits using bootstrap sampling of the simu-
lated dataset.

The data are simulated using uniform distributions for
a variable, x, and its standard deviation, σ. Samples of
a dependent variable, y, are then drawn from a normal
distribution.

x ∼ U(0, 1) (20)

σ ∼ U(.01, 1) (21)

y(x, σ) ∼ N (2x+ 2, σ2 | x, σ). (22)

For this example a simulated sample size of Ns = 1000.
The results of fitting a linear model to the lensed sub-

sets of the simulated data are shown in the left panels
of Fig. 2. In Table I, we show the comparison of the
lensing methods based on the t-tests on the slope and in-
tercept, computed with respect to the expected slope and
intercept values, using the simulated relation y = 2x+2.

To evaluate the stability and reliability of the lensing
procedure, we conducted bootstrap subsampling NB =
10000 times. In the middle panels of Fig. 2, we show the
bootstrapped values - the median and standard deviation
of the bootstrap subsamples for each x-bin. The orange
line is a fit to the orange points.
We then fit each bootstrap of the lensed subsample

with a linear model and compare the resulting slope and
intercept distributions in Fig. 2. We find that the pre-
diction intervals (

√
Ns + 1× estimated parameter error

of the simulated sample, and
√
NB + 1× estimated pa-

rameter error of the lensed subsample), shown as vertical
lines, agree well with the bootstrap distributions.
The Chow F statistics [26] and their corresponding P-

values were computed to compare the best-fitting model’s
evaluation to the best-fitting evaluations of the boot-
straps. In brief, the method computes the F -statistic
based on the sum of squares of the residuals of the best-
fitting model’s residual sum of squares, RSSm, the boot-
strap best-fitting model’s residual sum of squares RSSb

and the residual sum of squares of a union of the lensing
dataset and the bootstrapped lensing dataset, RSSu as

F =
(RSSu − (RSSm +RSSb))/k

(RSSm +RSSb)/(nm + nb − 2k)
, (23)

where k is the number of model parameters, i.e. k = 2,
and nm and nb are the sizes of the lensed dataset and
its bootstrap, respectively. We list the Chow F statis-
tic values and the corresponding p-values (using the
F (k, nm + nb − 2k) distribution) in table I. We find that
there is no statistically significant difference between the
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section channel. Left panel shows the lensed and thinned data for 124Sn, while the right panel shows the

FBET-smoothed lensed data and the FBET-smoothed thinned data.

lensed dataset and its bootstrap (P > 0.1). The method
therefore gives reliable results for all three lensing vari-
ants.

Computation times for the lensing methods are shown
in Table I, reported as the median and standard deviation
over bootstrap simulations. We find that the percentile-
based lensing method is significantly faster than the
KDE-based approach. For comparison, the classical thin-
ning method required over 5 minutes to process the same
dataset, due to the higher computational cost at each it-
eration.

V. RESULTS

We demonstrate our method on total cross section
data for four neutron-induced reactions—n+124Sn [27–
32], n+144Sm [33, 34], n+143Nd [35, 36], and n+150Nd
[35]—chosen to provide a diverse sample that includes
both resonance-rich and smooth, non-resonant measure-
ments. These results are intended to showcase the ef-
ficacy of our data thinning approach; a comprehensive
multi-channel evaluation [37] and extensions for highly
unbalanced datasets [38] will be presented in follow-up
work.

Figs. 3 and 4 display the full datasets alongside the
subsets extracted using our lensing algorithm. Left pan-
els show percentile-based estimates, middle panels show
KDE results, and right panels depict KDE estimates
with heteroscedastic error treatment. In all panels, black
points denote the complete dataset; colored points (blue,

orange, green) represent the lensed subsets; and crosses
indicate bootstrap-based estimates for the lensing-bin
values.
The selected datasets span both narrow and wide en-

ergy ranges, allowing us to evaluate the robustness of the
thinning procedure across different experimental regimes.
In particular, 143Nd and 150Nd offer dense low-energy
data, suitable for benchmarking statistical consistency,
but lack high-energy measurements (above ∼1 MeV) re-
quired for meaningful CoH3 model fits. In contrast, 124Sn
and 144Sm datasets extend into the fast neutron regime
and enable full model optimization. To illustrate this
difference, we perform fits for 124Sn (Sec. V).
Our results indicate that the lensing method tends to

exclude points within pronounced resonance peaks, es-
pecially in the 124Sn and 144Sm cases, thereby favor-
ing smoother samples more representative of the average
cross section. However, for reactions with limited en-
ergy ranges (notably 143Nd and 150Nd), the percentile-
based bootstrap estimates occasionally show offset from
the lensed subsets, likely due to uneven data distribution
in the energy–cross-section plane. KDE-based estimates,
which take local data density into account, help mitigate
this bias.
Table II reports computation times for the lensing

methods, including standard errors from 100 bootstrap
simulations. The percentile-based variant is substantially
faster than KDE-based lensing. All of the lensing meth-
ods are faster than the thinning method. The number
of bootstrap samples was chosen to strike a balance be-
tween reliable uncertainty estimation and total compu-
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Lensing method 124Sn 150Nd 143Nd 144Sm

Percentile-based 0.0312± 0.0014 0.01268± 0.00091 0.0146± 0.0013 0.0121± 0.0023
KDE-based 0.237± 0.018 0.0898± 0.0078 0.1218± 0.0044 0.546± 0.013
KDEσ-based 0.196± 0.016 0.0715± 0.0064 0.1167± 0.0035 0.446± 0.015
Thinning 1500± 390 9.0± 1.1 133.5± 7.0 1.98× 105a

a Evaluation for the 144Sm thinning method was omitted due to long runtimes.

TABLE II: Comparison of computation times (in seconds) for the lensing methods and the thinning method across
the selected nuclei. Uncertainties were estimated using 100 bootstrap samples.

tation times for bootstrap simulations.

Application to model fitting to n+ 124Sn

To further assess the impact of our data reduction
techniques, we applied the FBET data assimilation ap-
proach to the n + 124Sn lensed subset (see Fig. 3), fol-
lowed by a fit of a 6-parameter CoH3 model. Figure 5
contrasts the FBET-smoothed CoH3 fit from the lensed
dataset (blue points) with the outcome of the standard
data thinning method, which was applied to the full ini-
tial dataset before undergoing FBET processing. The
comparison reveals that the lensing approach yields es-
timates with closer agreement to the FBET-smoothed
expectations than does the traditional thinning proce-
dure. Notably, while the standard thinning method se-
lects points based on clustering of the most-distant (in-
fluential) measurements, our lensing algorithm selectively
eliminates resonance-associated points, thereby enhanc-
ing the fidelity of the reduced dataset.

The left panel of Fig. 5 illustrates the raw lensed
and thinned data prior to FBET smoothing. These re-
sults underscore that both thinning and lensing meth-
ods serve best as pre-processing steps in tandem with
FBET for subsequent CoH3 fits. In Fig. 5, we also
present the results of applying the FBET procedure
to the lensing and thinning reduced total cross section
dataset. Notably, the thinning procedure (red points) ex-
hibits a strong correspondence with the FBET-smoothed
complete dataset. This agreement stems from the fact
that thinning preferentially selects points that lie far
from the mean—predominantly capturing the resonance
peaks. By contrast, the lensing methods consider the
overall distribution of data within an energy bin, thus
weighting points closer to the mean cross section. This
fundamental difference in data selection explains the ob-
served discrepancies between the two approaches.

By condensing the dataset prior to applying FBET,
our approach markedly decreases the computational bur-
den traditionally associated with smoothing and param-
eter fitting, thereby expediting the overall analysis work-
flow and enabling more rapid exploration of parameter
spaces in large-scale nuclear data applications.

In Fig. 6, we present the bootstrap estimates for the
reduced datasets shown in Fig. 5 and fit these estimates

with the CoH3 model. This analysis is not intended as an
alternative to the lensing methods; rather, it illustrates
that the bootstrap estimates derived from the lensing ap-
proaches yield results consistent with the expected lensed
datasets, even after model fitting. These bootstrap esti-
mates are not actual measurements, and both the boot-
strap and smoothed bootstrap fits should be regarded as
purely illustrative. This can be seen in the behavior of
thinning bootstraps (red points in Fig. 6) whose medi-
ans, in contrast to the actual thinned subsets in Fig. 5,
below 1MeV are aligned with the lensing methods only
because the thinning bootstrap estimates appear sym-
metrically above and below lensing bootstraps, with sig-
nificantly larger uncertainties. We find that our method
provides robust results since the FBET smoothed boot-
straps in the right panel of Fig. 6 are in agreement with
the non-bootstrapped smoothed data in the right panel
of Fig. 5.

VI. CONCLUSION

We have presented a novel data thinning algorithm in-
spired by optical lensing, designed to improve the pre-
processing of nuclear cross section data for subsequent
statistical analysis. Our approach prioritizes the selec-
tion of structurally informative data points, particularly
in resonance-rich regions, and is compatible with stan-
dard Bayesian assimilation workflows such as FBET.
By applying our method to both simulated and experi-

mental nuclear data, we have shown that the optical lens-
ing method offers a practical compromise between infor-
mation retention and computational efficiency. In cases
where full dataset processing is prohibitively expensive,
our method allows analysts to work with a representative
subset that yields statistically comparable outcomes.
While our main focus has been on nuclear cross sec-

tions, the generality of the approach suggests broader ap-
plicability to other fields that involve dense experimental
datasets with correlated structures.
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son, P. Obložinský, C. Mattoon, H. Wienke, S. Hoblit,
Y. Cho, G. Nobre, V. Plujko, and V. Zerkin, Indc(nds)-
0603, International Atomic Energy Agency (2013).

[8] A. J. Koning and D. Rochman, Nuclear Data Sheets 113,
2841 (2012).

[9] O. Iwamoto, Journal of Nuclear Science and Technology
44, 687 (2007).

[10] T. Kawano, P. Talou, M. B. Chadwick, and T. Watan-
abe, Journal of Nuclear Science and Technology 47, 462
(2010).

[11] T. Kawano, arXiv e-prints , arXiv:1901.05641 (2019),
arXiv:1901.05641 [nucl-th].

[12] N. Otuka, E. Dupont, V. Semkova, B. Pritychenko,
A. I. Blokhin, M. Aikawa, S. Babykina, M. Bossant,
G. Chen, S. Dunaeva, R. A. Forrest, T. Fukahori, N. Fu-
rutachi, S. Ganesan, Z. Ge, O. O. Gritzay, M. Herman,
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