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Information geometry is a study of applying differential geometry methods to challenging statis-
tical problems, such as uncertainty quantification. In this work, we use information geometry to
study how measurement uncertainties in pre-neutron emission mass distributions affect the param-
eter estimation in the Hauser-Feshbach fission fragment decay code, CGMF. We quantify the impact
of reduced uncertainties on the pre-neutron mass yield of specific masses to these parameters, for
spontaneous fission of 252Cf, first using a toy model assuming Poissonian uncertainties, then an
experimental measurement taken from Göök et al., 2014 in EXFOR. We achieved a reduction of up

to ∼ 15% in CGMF parameter errors, predominantly in w
(1)
0 and w

(0)
1 .

I. INTRODUCTION

The fission of a heavy nucleus is a process in which
the parent nucleus undergoes a complex process of split-
ting into two or more lighter fission fragments. Imme-
diately following the scission of the compound nucleus,
prompt neutrons and γ rays are emitted on a very short
timescale, reaching either a ground state or long-lived
isomeric state. On longer timescales, these nuclei can
further β decay, emitting delayed neutrons and γ rays.
The emissions of these prompt and delayed neutrons and
γ rays depend on the initial conditions of the fission frag-
ments, e.g. their mass, charge, excitation energy, spin,
and parity. Because of the short timescales of the scission
process, these initial conditions–before prompt emission–
are impossible to determine directly from experiment and
must be inferred through subsequent prompt and delayed
measurements or from theory.

In nuclear fission reactions, the parent nucleus under-
goes a complex process of splitting into two or more
lighter nuclei. This process results in a wide distribu-
tion of fission fragments characterized by variations in
mass, charge, and kinetic energy. The pre-scission phase,
which occurs before the actual splitting, has been the
focus of extensive theoretical investigations. Different
models can be used to describe this phase. For ex-
ample, in the macroscopic-microscopic approach [1–3],
the nucleus is treated as a quantum charged liquid drop
while the purely microscopic approach [4, 5] starts from
phenomenological descriptions of nucleon-nucleon forces.
Recently, [6–9], researchers have made predictions re-
garding primary fission fragment yields. These predic-
tions take into account the pre-neutron fission fragment
mass distribution.

The CGMF code [10] models the de-excitation of fission
fragments on an event-by-event basis using the Hauser-
Feshbach statistical model of nuclear reactions [11]. It
samples initial conditions of the fission fragments in mass,
charge, total kinetic energy, spin, and parity, that have
been parametrized and fit to available experimental data.
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Prompt neutrons and γ rays are emitted probabilisti-
cally, and their energies and momenta are recorded for
each event, along with the initial conditions of the fission
fragments. These event histories can be used to analyze
various mean values, distributions, and correlations of
neutrons, γ rays, and fission fragments. Currently, CGMF
models binary fission while accounting for multi-chance
fission and the emission of pre-fission neutrons.

In parallel with the development of CGMF and other sim-
ilar codes [12–16], it is necessary to conduct modern fis-
sion experiments (see e.g. [17–20]) to better understand
the fission process as well as constrain phenomenological
inputs to theoretical models. The impact of the exper-
imental uncertainties on these inputs should be quanti-
fied, but to date, there have been very few studies of this
nature, e.g. [21, 22]. However, uncertainty quantification
as a whole has been increasing across the nuclear theory
community, e.g. [23? –36].

Information geometry is an interdisciplinary field that
introduces methods of differential geometry to statistical
problems like uncertainty quantification [37, 38]. While
its initial applications focused on machine learning, neu-
ral networks [39, 40], and to thermodynamics problems
[41], its methods have started being successfully applied
to various complex problems in biology [42], chemistry
[43] and physics [44, 45]. In the context of uncertainty
quantification in nuclear physics, information geometry
has been used in the framework of nuclear energy density
functionals to reduce model parameters and analyze self-
consistent models [44, 46–48], offering a bridge between
microscopic details and statistical insights. Motivated by
this successful application in energy density functionals,
we investigate its applications to uncertainty quantifica-
tion of CGMF model parameters.

In Sec. II, we present our method for updating mea-
surement errors based on theoretical uncertainties con-
strained using information geometry. Next, in Sec. III,
we give a brief overview of the method that CGMF uses
to sample fission fragment mass distributions. Then,
we describe the use of these CGMF-sampled distributions
to test our method on well-behaved Poissonian errors in
Sec. IVA and demonstrate its application to real data
in Sec. IVB. Finally, we conclude in Sec. V.
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II. MODEL-BASED MEASUREMENT ERROR
UPDATES

We use the following conventions to make the pro-
cedure more transparent: (1) the measurements are
indexed by letters i, j, · · · , (2) the model parameters
are indexed by Greek letters, (3) the eigenvalues of
the parameter covariance matrix are indexed by let-
ters a, b, · · · , (4) the space of residuals is labeled D,
the space of the model parameters M and the space
of covariance matrix eigenvalues by Λ, and (5) the Ein-
stein summation convention is used whenever possible.
In the standard minimization procedure, we model a
set of N measurements {yi}i∈{1,··· ,N} = {y1, · · · , yN}
with uncertainties {σi}i∈{1,··· ,N} = {σ1, · · · , σN} by

a model f1(θ), · · · , fN (θ) described by parameters
{θµ}µ∈{1,··· ,M} = {θ1, · · · , θM}. We assume that
the standardized differences between measurements and
model evaluations, i.e. residuals, follow the normal dis-
tribution and are identically distributed

ri(θ) =
yi − f i(θ)

σi
∼ N (0, 1). (1)

The best-fitting parameters θ are found by minimizing
the χ2 value

χ2(θ) =
1

2

N∑
i=1

(
ri(θ)

)2
, (2)

which is a result of the standard likelihood maximiza-
tion technique. This technique also yields a theoretical
lower bound to the parameter errors. By the Cramér-
Rao bound [see, e.g., 49], the inverse of the parameter
covariance matrix is bounded by the Fisher information
matrix [50]

gµν =

N∑
i=1

∂µ
f i

σi
∂ν

f i

σi
, (3)

where we use the shorthand notation ∂µ = ∂
∂θµ . In this

section, we consider the inverse problem: if we would like
to decrease the uncertainties on the model parameters,
for which measurements do we need to lower measure-
ment uncertainties. We start with a brief overview of
the differential geometry procedures in section IIA and
then use them to propose the measurement uncertainty
update estimate in section II B.

A. Differential geometry methods

The eigenvalues of the rank-2 (covariant-index) met-
ric tensor gµν are given by λa. The metric tensor in the

space of eigenvalues, Λ, is just the diagonal matrix, g
(Λ)
ab .

Its inverse is a rank-2 contravariant tensor, g(Λ)ab. In the

particular case in which we want to describe the eigen-
values of the covariance matrix, λa = 1/σ2

a

g(Λ)ab = δab
1

λa
= σ2

aδ
ab. (4)

We now transfer the metric tensor to the model space M
by means of the matrix of eigenvectors, Vµ

a, as computed
when solving the eigenvalue problem. This transforma-
tion yields the metric for the model space M:

g(M)
µν = [V g(Λ)V T ]µν (5)

=

M∑
a=1

M∑
b=1

Vµ
aλaδab[V

T ]bν (6)

=

M∑
a=1

Vµ
aVν

aλa (7)

The indices of g and V can be raised by the metric tensor
inverse, V µa = g(M)µνVν

a, keeping in mind that the ma-
trix gµν needs to correspond to the inverse of g. In the
language of tensor algebra, this results in the following
transformations, as expected from linear algebra

g(M)µν = g(M)µρg(M)νσg(M)
ρσ (8)

= [V g(Λ)−1V T ]µν (9)

=

M∑
a=1

M∑
b=1

V µ
aV

ν
b
δab

λa
(10)

In the language of differential geometry, covariant rank-1
tensors are represented by vectors in the cotangent bun-
dle (e.g., T ∗M) and contravariant rank-1 tensors are rep-
resented by vectors in the tangent bundle (e.g., TM).
The inverse metric tensor is an element of a direct prod-
uct of two tangent bundles,

g−1(Λ) =
M∑
a=1

1

λa

∂

∂V a
⊗ ∂

∂V a
∈ TΛ× TΛ. (11)

The metric tensor is represented by a functional acting
on elements of TΛ× TΛ, i.e.,

g(Λ) =

M∑
a=1

λadV
a ⊗ dV a ∈ T ∗Λ× T ∗Λ. (12)

The raising and lowering of indices are represented by
the musical isomorphisms. The raising of indices is per-
formed by the sharp operator # : T ∗Λ → TΛ, while
the lowering of indices is performed by the flat operator,
♭ : TΛ → T ∗Λ. In appendix A we give a brief description
of these operators.
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T ∗D

TD

T ∗M

TM

T ∗Λ

TΛ

♯♭ ♯♭ ♯♭

r∗

r∗ V∗

V T
∗

V ∗

V T∗

FIG. 1. Schematic representation of mappings used in section
II. The mapping ♭r∗V∗ used in section II B is shown in red.

B. Which measurements to conduct to reduce
parameter errors

We connect the model manifold, M, to the data space
by the residual mapping, r : M → D. Its corre-
sponding pullback and pushforward mappings are labeled
r∗ : T ∗D → T ∗M and r∗ : TM → TD. We summa-
rize the various mappings between tangent and cotangent
bundles of D, M and Λ in Figure 1. The metric in the
space of residuals is Euclidean, g(D) = δijdr

idrj , while its
pullback to the model manifold is the Fisher information
metric, g(M) = r∗g(D).

We would like to connect the cotangent bundle of the
space of residuals to the tangent bundle TΛ. We do this
by considering the mapping ♭r∗V∗ : TΛ → T ∗D. We
evaluate the effect of this mapping, shown in red in Figure
1, by computing how it acts upon an arbitrary element
of TΛ, A = Aa∂a ∈ TΛ

♭r∗V∗A = ♭ (r∗ (A
aV µ

a∂µ)) (13)

= AaV µ
a♭ (r∗ (∂µ)) (14)

= AaV µ
a∂µr

i♭ (∂i) (15)

= AaV µ
a∂µr

iδijdr
j (16)

= AaV µ
a

N∑
i=1

∂µr
idri. (17)

We now consider small perturbations to the eigenvalue
of the largest-uncertainty eigendirection, e0, whose σ0 is
reduced by a factor (1+α). The scaling factor α is used to
vary the intensity of the model parameters’ uncertainty
reduction to obtain a desired amount of reduction to the
prospective measurements’ uncertainty. This goes both
ways, since one can then see by how much measurement
needs to be improved to have the desired effect on model
parameters’ uncertainty. One can therefore simulate the
desired reduction of parameter errors by varying α, then
estimate the necessary reduction to measurement errors.
Note that α does not need to be a small quantity, as it

simply specifies the desired improvement in the precision

of that parameter. It can take large values if the experi-
mental design allows for proportionally smaller measure-
ment errors. In other words, α is constrained only by the
realistic limits of achievable measurement improvements,
not by any mathematical requirement that it must be
≪ 1.

This results in a sequence of spaces Λα, with its corre-
sponding tangent and cotangent bundles. We first nor-
malize the eigendirections e0(α) ∈ TΛα

e0(α) =
1√

g(Λα)(∂0, ∂0)

∂

∂V 0
(18)

=
σ0

1 + α
∂0, (19)

and then compute the difference

∆e0(α) = e0 − e0(α) =
α

1 + α
σ0∂0, (20)

pushed forward to the space of residuals,

∆r = ♭r∗V∗∆e0(α). (21)

Since we have related changes in residuals to the changes
in e0, we drop the normalization and use a modified ver-
sion of Eq. 20:

∆ẽ0(α) = ασ0∂0, (22)

so that we can freely vary the strength of the reductions
in residuals.
We keep the initial assumption ∆r ∼ N (0, 1) to esti-

mate the impact of this change to the derivatives of the
χ2 estimates

∂

∂σi
χ2 =

N∑
k=1

(yk − fk)2

−(σk)3
δik = − (ri)2

σi
(23)

∂2

∂σiσj
χ2 = 3

(yi − f i)2

(σi)4
δij = 3

(
ri

σi

)2

δij . (24)

These derivatives are then used to estimate the expected
squared change of the residuals, E[dr ⊗ dr], in a process
similar to the one used to derive the Fisher information
metric

E[dr ⊗ dr] = E

[(
∂2χ2

∂σiσj
dσi ⊗ dσj

)]
(25)

=

N∑
i=1

N∑
j=1

3E

[
(ri)2

(σi)2
δij

]
dσi ⊗ dσj (26)

=

N∑
i=1

3

(
dσi

σi

)2

, (27)

where we have used the property of the residuals
E[(ri)2] = 1. We connect E[dr ⊗ dr] to the numerical
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perturbation of the eigenvalue by α, E[∆r ⊗∆r]

E[∆r ⊗∆r] =

N∑
i=1

N∑
j=1

E[(∆ri)⊗ (∆rj)] (28)

=

N∑
i=1

N∑
j=1

δijE[(∆ri)⊗ (∆rj)] (29)

=

N∑
i=1

E
[
(∆ri)2

]
(30)

=

N∑
i=1

σ2
0α

2(V 0
µ g

(M)µν∂νr
i)2dri ⊗ dri (31)

This connection yields the following update to the rel-
ative error dσi/σi and the error shifts dσi∣∣∣∣dσi

σi

∣∣∣∣ = ∣∣∣∣σ0
α√
3
V 0
µ g

(M)µν∂νr
i

∣∣∣∣ (32)

∣∣dσi
∣∣ = ∣∣∣∣σ0

α√
3
V 0
µ g

(M)µν∂νf
i

∣∣∣∣ . (33)

We use properties of the fitted model to inform us which
measurements are worth repeating with greater precision.

III. FISSION FRAGMENT MASS
DISTRIBUTION

CGMF uses a three-Gaussian representation for the pre-
neutron fission fragment mass distribution

Y (A;En) = G0(A) +G1(A) +G2(A), (34)

where G0 corresponds to a symmetric mode, and G1 and
G2 correspond to the two asymmetric modes:

G0(A) =
w0

σ0

√
2π

exp

(
− (A−A)2

2σ2
0

)
, (35)

G1,2(A) =
w1,2

σ1,2

√
2π

[
exp

(
− (A− µ1,2)

2

2σ2
1,2

)
(36)

+ exp

(
− (A− (Ap − µ1,2))

2

2σ2
1,2

)]
. (37)

Here, A = Ap/2, with Ap being the mass of the par-
ent fissioning nucleus. In the case where the pre-fission
neutrons are emitted, A can differ from the original
compound nucleus (Zc, Ac). The Gaussians require the
means, µi, the weights, wi, and the widths, σi, of the
symmetric Gaussian mode (i = 0) and the two asymmet-
ric Gaussian modes (i ∈ {1, 2}).
The Gaussian mode parameters have an energy depen-

dence, and CGMF models the means and widths as linear
in the incident neutron energy

µi = µ
(0)
i + µ

(1)
i En (38)

σi = σ
(0)
i + σ

(1)
i En. (39)

The weights are given by a Fermi function

wi =
1

1 + exp[(En − w
(0)
i )/w

(1)
i ]

. (40)

The following conservation equation, w0 = 2 − 2w1 −
2w2, is used to calculate the weight of the symmetric
Gaussian w0.

IV. RESULTS

We have chosen to vary a subset of the CGMF param-

eters (w
(0)
0 , w

(1)
0 , w

(0)
1 , w

(1)
1 , µ

(0)
0 , µ

(0)
1 , and σ

(0)
0 ), for

which we numerically estimate the jacobians by shifting
the CGMF input parameters by a value of ±0.1. We use
these jacobians to compute g(M) for this parameter sub-
space.
We have computed the error shifts, dσi, for each atomic

mass bin of the CGMF simulations of the mass distributions
of 252Cf for the different relative values of the scaling
parameter α.

A. Poissonian errors

We have applied the method outlined in section II B to
the pre-neutron emission mass distributions of the spon-
taneous fission of 252Cf, using the 10000 CGMF simula-
tions. To do this, we group the outputs of CGMF fission
event simulations by atomic mass, count the number of
fission events in each atomic mass bin, N i, and compute
the pre-neutron emission mass yields as

Y i = 2
N i

N∑
j=1

N j

. (41)

We estimate the errors for this dataset using the Poisso-
nian error model

σi = 2

√
N i

N∑
j=1

N j

. (42)

To study the reliability of these estimates, we run
100 Monte Carlo simulations centered around the de-
fault CGMF parameter values[10], θdefault, and modeled
by a covariance matrix g−1(M) as a normal distribution,
N (θdefault, g

−1(M)). We run CGMF for each simulated
point in the parameter space and compute the corre-
sponding σi

sim = σi − dσi, as in Eq. (33). The procedure
is summarized in Fig. 2. In Fig. 3 we show the results of
these simulations as the 16-84 percentile interval for the
relative errors dσi/σi, shown for α = 1 as an example.
As expected the median (orange line) shows less oscilla-
tions than the relative error computed only at one point.
Even when considering the median over all simulations,
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Measurement
errors σi gµν =

N∑
i=1

∂µ
fi

σi ∂ν
fi

σi

θsim ∼
N (θdefault, g

−1(M))

gsimµν =
N∑
i=1

∂µ
fi

σi
sim

∂ν
fi

σi
sim

∣∣dσi
sim

∣∣ =∣∣∣σ0
α√
3
V 0
µ g

(M)µν
sim∂νf

i
∣∣∣

FIG. 2. Schematic overview of the procedure used to derive Monte Carlo simulations of the measurement error reductions. For
each sample, θsim, the measurement error reductions, dσi

sim, are computed using gsimµν .

Fig. 3 shows that the contribution of individual atomic
mass bins to the relative change dσi/σi remains highly
non-uniform.

Figures 4–6 summarize the behaviour of the algorithm.
Figure 4 shows the eigenvalues of the parameter covari-
ance matrix (i.e., the inverses of the FIM eigenvalues)
after a single step of error reduction, plotted as a func-
tion of the scaling factor α. By construction, the pro-
cedure targets the largest-uncertainty eigendirection σ0

1;
consequently, all remaining covariance matrix eigenvalues
satisfy σa ≤ σ0(α). Figure 5 presents the corresponding
parameter errors in the model space M as α varies, while
Fig. 6 shows the relative reductions in the measurement
errors dσi/σi implied by the same α values.
The median improvement across all Monte Carlo sim-

ulations is reported in these figures, allowing a direct
“lookup” usage: for a desired reduction in parameter un-
certainties (read from Fig. 5), one can determine the nec-
essary measurement precision improvement (read from
Fig. 6). Table I lists the ten atomic mass bins with the

80 100 120 140 160
A

0.00

0.02

0.04

0.06

0.08

0.10

d
i /

i

Single point
Simulations

FIG. 3. Relative change of the measurement errors (blue)
for α = 1 for Poissonian errors. The orange shaded region
is the 16-84 percentile interval computed using Monte Carlo
simulations and the orange line is the median.

1 The σ0 used here is unrelated to the one in Eq. 35.

largest relative error shifts for representative α values, in-
dicating the most effective measurements to repeat. As
expected, increasing α yields progressively smaller pa-
rameter errors, but this comes at the cost of proportion-
ally larger reductions in the corresponding measurement
uncertainties.

The asymmetry of the uncertainties in Table I arises
from our choice to report the 16th–84th percentile in-
terval from the Monte Carlo distributions, rather than a
standard deviation around the median. This approach
captures the actual shape of the distributions of dσi/σi,
which are not necessarily symmetric due to the nonlin-
ear mapping from parameter space to measurement-error
space. In such cases, percentile-based intervals provide
a more robust, non-parametric characterization of uncer-
tainty, especially when the distributions exhibit skewness
or extended tails. Importantly, this method does not al-
ter the underlying distributions, which remain essentially
unchanged under this form of analysis.

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

a

0
1
2
3
4
5
6

FIG. 4. Inverses of the FIM eigenvalues as functions of α for
Poissonian errors. Shown are the medians (solid lines) and
the 16-84 percentile intervals (shaded regions) of covariance
matrix eigenvalues computed using Monte Carlo simulations.
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A dσi

σi (α = 0.1) dσi

σi (α = 0.5) dσi

σi (α = 1)

126 0.003+0.003
−0.002 0.013+0.017

−0.008 0.026+0.035
−0.017

122 0.002+0.002
−0.001 0.010+0.010

−0.005 0.020+0.020
−0.010

130 0.002+0.002
−0.001 0.010+0.010

−0.005 0.020+0.020
−0.010

129 0.002+0.002
−0.001 0.009+0.008

−0.007 0.019+0.016
−0.013

123 0.002+0.002
−0.001 0.009+0.008

−0.007 0.019+0.016
−0.013

120 0.002+0.001
−0.001 0.009+0.005

−0.006 0.018+0.011
−0.013

132 0.002+0.001
−0.001 0.009+0.005

−0.006 0.018+0.011
−0.013

125 0.002+0.002
−0.001 0.009+0.009

−0.006 0.018+0.018
−0.013

127 0.002+0.002
−0.001 0.009+0.009

−0.006 0.018+0.018
−0.013

160 0.002+0.002
−0.001 0.009+0.008

−0.005 0.017+0.015
−0.011

TABLE I. The mass numbers with the 10 highest median
relative error shifts for different values of α for Poissonian
errors. The asymmetric errors are computed from the 16-th
and 84-th percentiles.

0.0 0.2 0.4 0.6 0.8 1.0
0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

(
)

(w(0)
0 )

(w(1)
0 )

( (0)
0 )

( (0)
0 )

(w(0)
1 )

(w(1)
1 )

( (0)
1 )

FIG. 5. Parameter errors as functions of α for Poissonian
errors. Shown are the medians (solid lines) and the 16-84
percentile intervals (shaded regions) of the square roots of
the covariance matrix diagonal values computed using Monte
Carlo simulations.

0.0 0.2 0.4 0.6 0.8 1.0

80

100

120

140

160

A

0.000

0.005

0.010

0.015

0.020

0.025

d
i /

i

FIG. 6. Relative change of the pre-neutron emission mass
yields measurement errors as a function of α for Poissonian
errors.

B. Real measurement errors

We have also applied our method to the measurements
of the 252Cf pre-neutron emission mass yields taken from
EXFOR [18]. Since the only required experimental data
for our method are measurement errors, we can compare
not only the application to the default CGMF parameter
point, but we can also rescale the Monte Carlo sample
of the CGMF Jacobians to the real measurement errors,
instead of the Poissonian error model. The results of
this procedure are shown in Figs. 7, 8, 9, and 10 corre-
sponding to the similar Figs. 3, 4, 6, and 5 for Poissonian
errors. We see the same kind of behavior as the toy prob-
lem discussed in Sec. IVA, albeit with peaks of varying
amplitude. For Poissonian errors in Fig. 3, the results of
simulations (orange) generally follow the peaks at the de-
fault point (blue), but their peaks are ∼ 5 times higher
than the simulations compared. This is similar to the
peaks in real 252Cf uncertainties. Real changes of mea-
surement errors are overall ∼ 10 times higher in Fig. 7
than for Poissonian case in Fig. 3. The inverse FIM eigen-
values (Fig. 8) and parameter errors (Fig. 9) are ∼ 5−10
times higher than in the toy problem in Figs. 4 and 5.
We list the relative errors for the 10 highest relative er-
ror shifts for different values of α in table II. The chosen
values of α in the table are different from those in table
I because of the different scale of the relative measure-
ment errors in these two datasets. From the parameter
errors normalized to their values at α = 0 (i.e., the case
of no reduction) in Fig. 11, we conclude that by reducing
measurement uncertainties one can achieve a maximum
reduction of up to ∼ 15% for the cases of w

(1)
0 and w

(0)
1

(orange and purple lines in Fig. 11).

80 100 120 140 160
A

0.0

0.1

0.2

0.3

0.4

d
i /

i

Single point
Simulations

FIG. 7. Relative change of the measurement errors (blue) for
α = 1 for measurements of 252Cf. The orange shaded region
is the 16-84 percentile interval computed using Monte Carlo
simulations and the orange line is the median.



7

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

a

0
1
2
3
4
5
6

FIG. 8. Inverses of the FIM eigenvalues as functions of α
for measurements of 252Cf. Shown are the medians (solid
lines) and the 16-84 percentile intervals (shaded regions) of
covariance matrix eigenvalues computed using Monte Carlo
simulations.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

(
)

(w(0)
0 )

(w(1)
0 )

( (0)
0 )
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are the medians of the square roots of the covariance matrix
diagonal values computed using Monte Carlo simulations.
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A dσi

σi (α = 0.1) dσi

σi (α = 0.5) dσi

σi (α = 1.0)

129 0.008+0.014
−0.007 0.041+0.070

−0.033 0.081+0.141
−0.067

147 0.008+0.015
−0.006 0.039+0.074

−0.029 0.078+0.147
−0.058

126 0.007+0.014
−0.006 0.034+0.071

−0.029 0.068+0.141
−0.059

144 0.006+0.015
−0.005 0.031+0.074

−0.023 0.062+0.148
−0.047

125 0.006+0.013
−0.005 0.029+0.063

−0.023 0.058+0.126
−0.047

104 0.005+0.010
−0.004 0.027+0.051

−0.020 0.055+0.103
−0.039

114 0.004+0.009
−0.004 0.022+0.044

−0.018 0.045+0.087
−0.036

127 0.004+0.009
−0.003 0.022+0.047

−0.017 0.043+0.095
−0.035

142 0.004+0.009
−0.003 0.021+0.046

−0.016 0.042+0.092
−0.031

137 0.004+0.008
−0.003 0.019+0.040

−0.014 0.039+0.081
−0.029

TABLE II. The atomic numbers with the 10 highest median
relative error shifts for different values of α for measurements
of 252Cf. The asymmetric errors are computed from the 16-th
and 84-th percentiles.

V. CONCLUSION

The CGMF code plays a pivotal role in modeling the de-
excitation of fission fragments. Operating on an event-
by-event basis, this code predicts distributions and cor-
relations of neutrons, photons, and fission fragments. It
relies on the Hauser-Feshbach statistical model of nuclear
reactions. Currently, the CGMF code focuses on binary
fission, accounting for pre-scission neutrons and multi-
chance fission.

In this work, we applied information-geometric meth-
ods to investigate the impact of measurement errors in
the CGMF model for the pre-neutron emission mass distri-
bution model. We demonstrated our method for spon-
taneous fission of 252Cf on both a toy problem using a
Poissonian error model and to experimental measure-
ment from Göök et al., 2014 [18]. We relate the de-
sired reduction in CGMF parameter errors to the neces-
sary reduction in relative measurement errors to achieve
it. We do this by varying the reduction in the largest-
uncertainty eigendirection of the CGMF parameter covari-
ance matrix by a scaling parameter α and project this to
both the CGMF parameter uncertainty space and to the
space of relative measurement errors. This is essentially
a lookup table that connects measurement uncertainties
to parameter uncertainties. We found the atomic num-
bers at which we expect that the increase in experimental
accuracy of pre-neutron emission mass yields would yield
the greatest improvement in the accuracy of CGMF model
parameters.

Beyond the specific application to CGMF and nuclear
fission modeling, the information-geometric framework
developed in this work represents a novel and broadly
applicable approach. Its formulation is not limited to nu-
clear data analysis, and can be directly adapted to a wide
range of disciplines where the interplay between measure-
ment uncertainties and parameter constraints plays a de-
cisive role.
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Appendix A: Musical isomorphisms

The raising of indices is performed by the sharp oper-
ator # : T ∗Λ → TΛ. This operation transforms a co-
variant vector with lower indices, A = AadV

a ∈ T ∗Λ,
to a contravariant vector with upper indices, #A =
Aa∂a = (Abg

ab)∂a. Its inverse is the flat operator,
♭ : TΛ → T ∗Λ, which corresponds to lowering vector
indices, Aa = gabA

b. These operators can also act on
product spaces, e.g. on the metric

#g(Λ) =
[
#g(Λ)

]ab
∂a ⊗ ∂b = g−1(Λ) (A1)

♭g−1(Λ) =
[
♭g−1(Λ)

]
ab

dV a ⊗ dV b = g(Λ). (A2)

If the spaces Λ and M are connected by a mapping
V T : M → Λ, the tangent bundle mapping is performed
by the pushforward mapping, V T

∗ : TM → TΛ. The
cotangent bundles are connected by the pullback map-
ping, V T∗ : T ∗Λ → T ∗M. These operations have a direct
generalization to product spaces. The pullback operator
V T∗ transforms the metric g(Λ) to the metric g(M)

V T∗g(Λ) =

M∑
a=1

λa(Vµ
adθµ)⊗ (Vν

adθν) (A3)

= [V g(Λ)V T ]µνdθ
µ ⊗ dθν (A4)

= g(M). (A5)

The inverse metric inverse, however, is transformed by
the pushforward operator V T

∗ from g−1(M) to g−1(Λ)

V T
∗ (g−1(M)) = V T

∗ (g(M)µν∂µ ⊗ ∂ν) (A6)

= g(M)µνVµ
aVν

b ∂

∂V a
⊗ ∂

∂V b
(A7)

=

M∑
a=1

σ2
a∂a ⊗ ∂a (A8)

= g−1(Λ). (A9)

We therefore need the inverse transform to transform
g−1(Λ) into g−1(M), i.e. g−1(M) = V∗g

−1(Λ).
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