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Abstract

Theoretical models of β-delayed neutron emission are used as crucial inputs in r-process calculations. Bench-

marking the predictions of these models is a challenge due to a lack of currently available experimental data.

In this work the β-delayed neutron emission probabilities of 33 nuclides in the important mass regions south

and south-west of 132Sn are presented, 16 for the first time. The measurements were performed at RIKEN

using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P1n

values presented constrain the predictions of theoretical models in the region, affecting the final abundance

distribution of the second r-process peak at A ≈ 130.
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The astrophysical conditions for the r-process, i.e. the nucleosynthesis process responsible for the pro-

duction of half the elements heavier than iron, are still a matter of debate [1–3]. Recent observations, such

as the gravitational wave event GW170817 and its accompanying electromagnetic counterpart [4–8], point

to binary neutron star mergers as a significant source of r-process material in the galaxy [8–10]. It is not

yet determined whether these events are partially or entirely able to reproduce the r-process abundance

pattern observed throughout the galaxy. Hydrodynamical models of these events [11] provide the astro-

physical conditions present during these events, allowing reaction networks to simulate the nucleosynthesis

taking place under explosive conditions [12]. Performing accurate reaction network calculations requires a

precise knowledge of the nuclear properties of the nuclei involved. In particular, heavy element abundance

predictions are sensitive to the values of nuclear masses, β-decay half-lives and β-delayed neutron emission

probabilities Pn of very neutron-rich nuclei [13, 14]. r-process calculations are not only sensitive to Pn values

of nuclei along the r-process path but also of nuclei encountered as they β-decay back to stability, where

neutron emission causes branching along the decay chains modifying the final abundance distributions and

act as a secondary source of neutrons during freeze-out.

Nuclear theory predictions of Pn values depend on the β-strength function Sβ [15], and the masses of the

nuclei used for the calculations. Theoretical models broadly fall into two categories: microscopic models and

phenomenological models. Microscopic models aim to describe Sβ based on microscopic theories, typically

through some form of Quasiparticle Random Phase Approximation (QRPA) [16, 17]. Phenomenological

models aim to provide a description of Sβ based on the systematic trends of existing Pn values. The

benchmarking of these theoretical models against new experimental data, as they are extrapolated far from

stability, is critical for reliable modelling of the astrophysical r-process [2, 18]. When compared to the most

recent evaluation of Pn values [19] microscopic models, such as the Finite Range Droplet Model with QRPA

(FRDM+QRPA) [17, 20], systematically underpredict the Pn values of nuclei in the mass region south-west

of 132Sn, just below the N = 82 shell closure. Sensitivity studies have shown r-process abundances to be

particularly sensitive to changes in Pn values in this region that shapes the second r-process peak [14]. In this

region the total Pn value for most nuclei is equal to its P1n value, the probability of a single delayed-neutron

being emitted.

In this paper the β-delayed neutron emission probabilities and β-decay half-lives of 33 neutron-rich nuclei

with N ≤ 82 are presented. In particular, we report the first experimental P1n measurements of 16 nuclides:

115−116Tc, 116−121Ru, 119−124Rh, 128Pd and 127−129Cd. Also included, and often with higher precision than

previous data, are measurements of 121−128Pd, 124−129Ag and 130Cd that encompass the nuclides for which
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the current discrepancy between experiment and theory is observed.
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Figure 1: Particle identification plot obtained by BigRIPS showing the atomic number Z against A/Q ratio of ions implanted
in the AIDA detector stack. Nuclide labels relate to the adjacent groups highlighted by red ellipses.

The experiment was performed at the Radioactive Isotope Beam Factory (RIBF) [21], located at the

RIKEN Nishina Centre in Japan. Exotic neutron-rich nuclei were produced by in-flight fission of a 50 pnA

primary beam of 238U accelerated to an energy of 345 MeV/u impinging on a 9Be target. The fission

products of interest were analysed using the BigRIPS separator [22, 23]. Particle identification (PID) was

performed using the ∆E −Bρ− TOF method [24] in the second stage of BigRIPS. The resulting PID plot

is shown in Figure 1. Contaminant events such as hydrogen-like ions are clearly separated from the fully

stripped ions of interest even for the most neutron-rich nuclei. The identified ions of interest were delivered

to the F11 experimental area at a rate of around 100 ions per second via the ZeroDegree spectrometer [23].
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The Advanced Implantation Detector Array (AIDA) [25] was installed in the F11 experimental area and

used for the measurements of implanted ions and their subsequent decays. AIDA comprised six 128×128

strip, 1 mm thick Double-sided Silicon Strip Detectors (DSSDs). High resolution positional information

was obtained for implanted ions via energy signal matching from the strips of the front and rear sides of

the detector. When the energy was deposited across multiple adjacent strips, total deposited energy was

calculated summing the individual strip contributions. The overlapping area between the front and rear

strips in which energies were recorded form a cluster localising the event, typically to a region of ∼ 1 mm2 in

the x and y planes of the detector. Decay events in the detector were localised using the same methodology

although clusters were observed to vary in size due to the higher penetrability of β particles. Correlations

between implantation and decay events were performed by identifying events in which the area of the β-decay

event cluster was overlapping with or adjacent to the area of an implantation event cluster. This definition of

a correlation was found to maximise the β-detection efficiency while minimising random correlations [26, 27].

β-delayed neutrons were detected using the BRIKEN neutron counter array [28, 29], which consisted

of 140 3He proportional counters embedded in a High-Density Polyethylene (HDPE) matrix. A nominal

neutron detection efficiency of 66.8(20)% was used for β-delayed neutrons in this region of interest. The

efficiency was determined via the use of Monte Carlo simulations [28], and verified through measurements of

the well-known neutron energy spectrum of 252Cf [30].Theoretical predictions of the neutron-energy spectra

expected were obtained for two of the most neutron-rich nuclides studied, 124Rh and 129Ag. The spectra

were generated utilising the model detailed in Ref. [31] and took Sβ from Ref. [17]. These spectra showed

that the majority of neutrons are emitted in the energy range of 0 − 2 MeV with average neutron energies

of less than 1 MeV. Across this energy range the neutron-detection efficiency of BRIKEN is “flat” allowing

the same nominal neutron-detection efficiency to be used for all nuclides [28, 30].

Half-lives and P1n values were obtained through Bateman equation fits [32] of the β-decay and neutron-

gated β-decay activities, which included the contributions of all decay products along the path to stability.

The fits accounted for the contributions of random neutrons and random β-decay correlations. Figure 2

shows an example fit of the neutron-gated activity of 121Rh. A detailed description of the full analysis

methodology used can be found in Ref. [30]. All values that were not measured in this experiment were

taken from the Evaluated Nuclear Structure Data File (ENSDF) database [33].

The P1n values and half-lives for nuclides measured in this work are presented in Table 1. Where

upper limits have been assigned to a P1n value, it is calculated with a 95% confidence limit assuming

a Gaussian estimator. Estimated masses extrapolated from the mass surface [34] indicate β-delayed two

neutron emission is energetically possible for 128−129Ag and 127−128Pd. However, no evidence of two neutron

emission was observed in this work.

Figure 3 shows our measured P1n values grouped by element as a function of neutron number. Recom-

mended P1n values from the recent evaluation [19] are also shown in Figure 3. Predictions of four theoretical

4



1− 0.5− 0 0.5 1 1.5 2 2.5 3
 [s]Impt-βt

1

10

210

C
ou

nt
s 

/ 2
5 

m
s

Figure 2: Time distribution of neutron-gated 121Rh β-decay events fitted as part of the analysis. The fitted function (red
dashed line) includes contributions of the parent decay (green line), β-delayed neutron emitting daughters and granddaughters
(orange line), randomly correlated neutrons (blue line) and a linear random background (purple line).

Figure 3: Experimental P1n values (symbols) from both this work (circles) and the current recommended values from the most
recent evaluation [19] (triangles). Lines are used to show the published theoretical P1n-values: FRDM+QRPA (orange line)
[20], FRDM+QRPA+HF (blue line) [17], RHB+pn-RQRPA (green line) [35] and the EDM (purple line) [36, 37]

model calculations are included. These include the Finite Range Droplet Model [38] with the Quasiparticle

Random Phase Approximation (FRDM+QRPA) [20], the FRDM+QRPA with the inclusion of a Hauser-

Feshbach framework (FRDM+QRPA+HF) [17], the Relativistic Hartree-Bogoliubov mass model with the

proton-neutron Relativistic QRPA [35] (RHB+pn-RQRPA) and the semi-empirical Effective Density Model
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[36, 37].

Comparing the P1n values presented here to the values from the most recent evaluation [19], significant

systematic differences can be seen in Figure 3. This discrepancy is also present between the theory predictions

and this evaluation. The evaluation values which show the largest systematic differences, 123−127Pd and

125−128Ag, are all taken from a single source, corresponding to a PhD thesis [39] representing the only

available source of measurements for these nuclides and labelled as “preliminary” in [19]. The two other

sources that make up the evaluation in the region — providing P1n values for 118−121Rh, 121−122Pd and

124Ag [40]; and 130Cd [41] — are from peer reviewed sources and are consistent with the present, often more

precise, values.

The P1n values reported in this work show a regular trend for most elements, of increasing neutron

emission probability as neutron number increases. Some odd-even staggering in the P1n values is observed

for the lighter elements, such as Tc, Ru and Rh, though this is seen to diminish for nuclei close to Z = 50

where a smoother increase is observed. The predictions of the FRDM+QRPA and FRDM+QRPA+HF

calculations reproduce this trend well across all isotopic chains, matching much of the staggering that is

observed in the experimental values. The P1n values predicted by FRDM+QRPA (2003) are calculated

using the “cutoff” method [20], making the assumption that if a state above the neutron-separation energy

Sn, the energy required to remove a single neutron from the nucleus, of the β-decay daughter is populated a

neutron will be emitted. With the inclusion of the HF framework, de-excitation of the daughter is handled

statistically, including γ-ray emission explicitly at every stage [31, 42]. The semi-empirical EDM calculations

reproduce the general trend of the data well. Large odd-even staggering in the predicted P1n values though

result in the calculations fluctuating above and below the experimental values. The predictions of the

RHB+pn-RQRPA are seen to be systematically smaller than both the predictions of the other models and

the P1n values measured here for almost all nuclides.

The impact of the newly measured P1n values on r-process abundances was explored by estimating their

effect during the decay to stability following the freeze-out of neutron-capture reactions. The calculation

assumes that the r-process path passes through 128Pd and 127Rh, which act as classical waiting points

with their abundances weighted by their respective half-lives, and that the decay to stability follows an

instantaneous freeze-out. These isotones lying on the N = 82 shell closure are part of the r-process path

in many calculations [43, 44]. The resulting isobaric abundance distribution of the stable nuclei produced

after the progenitor 128Pd and 127Rh abundances decay back to stability is shown in Figure 4. Abundance

uncertainties were calculated using a Monte Carlo approach where the experimental P1n values were varied

within their uncertainties. As it was not measured during the experiment, the P1n value for 127Rh was taken

from the FRDM+QRPA+HF calculations due to their good agreement with the measured values of other

nuclei in the region. This agreement between the theoretical P1n values of FRDM+QRPA+HF and those

presented in this work is reflected in the similar calculated abundances shown in Figure 4. In contrast the
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Figure 4: Resulting r-process abundance following an instantaneous freeze out starting with an initial abundance distribution
of 128Pd and 127Rh weighted by their literature half-lives.

large differences between the theoretical RHB+pn-RQRPA P1n values and experiment are seen to have a

significant impact on the abundance distribution, with large differences seen across all values of A.

Comparisons from our present calculations can be made with solar r-process abundances by taking the

ratio of isobaric abundances Y . For example the YA=128/YA=127 ratio obtained with our experimental P1n

values, 1.5(2), compares with observations of the solar r-process abundance distribution which vary from

1.73− 1.77 [45–47]. The difference between the calculated and observed abundance ratios may be explained

by the absence of A = 129 progenitor nuclei in the calculation. The A = 129 isobars 129Ag and 129Cd

have P1n values of 17.9(14)% and 1.84(15)%, respectively, resulting in around 18% of the final A = 128

abundance originating from the A = 129 decay chain. Accounting for this contribution in the abundances

of A = 128 increases the ratio of YA=128/YA=127 to 1.83(25) in very good agreement with the observed solar

ratio. In contrast, calculations using the predicted P1n values of RHB+pn-RQRPA result in a significantly

larger ratio of 8.0, much larger than the observed solar ratio. These calculations show the importance of

having precise P1n values for use in r-process calculations, particularly in regions such as the N = 82 shell

closure where large amounts of matter accumulate during the r-process allowing the P1n values of relatively

few nuclei to have a large impact on the final r-process abundance distribution.

Figure 5 shows our measured β-decay half-lives grouped by element and plotted against neutron number.

Recent literature half-lives from Lorusso et al. [48] are also shown for comparison. Excellent agreement is

observed between the two data sets, with almost all values falling within uncertainties. When comparing

these values with the predictions of theoretical models in Figure 5, it is seen that the FRDM+QRPA cal-
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Figure 5: Experimental half-lives (symbols) from both this work (circles) and Lorusso et al. [48] (triangles). Lines are used to
show the published values of theoretical half-lives: FRDM+QRPA (orange line) [20], FRDM+QRPA+HF (blue line) [17] and
RHB+pn-RQRPA (green line) [35].

culations differ significantly from the measured half-lives, particularly for even-Z nuclides, in stark contrast

to their good agreement with the measured P1n values. The RHB+pn-RQRPA model best reproduces the

nuclides presented here, despite systematically underpredicting the P1n values of all nuclides. In particular,

the RHB model calculations accurately reproduce the values for the high-Z Cd nuclides. The differences

between the various models’ abilities to predict Pn values and half-lives shows the importance of having

experimental measurements of both quantities to test the validity of these theoretical models as they are

extrapolated far from stability.

In summary, we have presented β-delayed neutron emission probabilities and β-decay half-lives of 33

neutron-rich nuclei around the N=82 shell closure of importance for the astrophysical r-process. Our new P1n

values are generally well reproduced by theoretical models. This agreement is in contrast with a significant

discrepancy between the very recently published evaluation of Pn values [19] and the predictions of these

theoretical models in the same region. Furthermore, we showed that while FRDM+QRPA calculations

are able to reproduce the present P1n values well, they are unable to reproduce the measured half-lives,

in particular those of even-Z nuclides. In contrast RHB+pn-RQRPA calculations systematically under-

predict P1n values in this region, but are best able to reproduce the measured half-lives. This showcases

the strengths and weaknesses of different theoretical approaches, and reinforces the importance of having

experimental measurements. In particular, the benefit of having experimental measurements of multiple

properties predicted by the models is evident, with just experimental half-lives or Pn values to compare one

could falsely conclude that a model performs well in a region. Calculations performed exploring the impact

of P1n values on the local astrophysical r-process abundance distribution shows that the present P1n values

well explain the observed solar A = 127 and 128 abundances that form part of the second r-process peak.
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[2] C. J. Horowitz, A. Arcones, B. Côté, I. Dillmann, W. Nazarewicz, I. U. Roederer, H. Schatz, A. Aprahamian, D. Atanasov,
A. Bauswein, et al., R -Process Nucleosynthesis: Connecting Rare-Isotope Beam Facilities With the Cosmos , Journal of
Physics G: Nuclear and Particle Physics 46 (8) (2019) 083001. arXiv:1805.04637, doi:10.1088/1361-6471/ab0849.

[3] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Mart́ınez-Pinedo, F.-K. Thielemann,
Making the Heaviest Elements in the Universe: A Review of the Rapid Neutron Capture Process, Rev. Mod. Phys. in

9

https://link.aps.org/doi/10.1103/RevModPhys.29.547
https://doi.org/10.1103/RevModPhys.29.547
https://link.aps.org/doi/10.1103/RevModPhys.29.547
http://arxiv.org/abs/1805.04637
https://doi.org/10.1088/1361-6471/ab0849
http://arxiv.org/abs/1901.01410


press (jan 2020). arXiv:1901.01410.
URL http://arxiv.org/abs/1901.01410

[4] B. P. Abbott, et al. (LIGO Scientific Collaboration, V. Collaboration), GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (16) (2017) 161101. arXiv:1710.05832, doi:

10.1103/PhysRevLett.119.161101.
URL https://link.aps.org/doi/10.1103/PhysRevLett.119.161101

[5] S. J. Smartt, T.-W. Chen, A. Jerkstrand, M. Coughlin, E. Kankare, S. A. Sim, M. Fraser, C. Inserra, K. Maguire,
K. C. Chambers, et al., A kilonova as the electromagnetic counterpart to a gravitational-wave source, Nature (2017)
1–21arXiv:1710.05841, doi:10.1038/nature24303.
URL http://www.nature.com/doifinder/10.1038/nature24303

[6] I. Arcavi, G. Hosseinzadeh, D. A. Howell, C. McCully, D. Poznanski, D. Kasen, J. Barnes, M. Zaltzman, S. Vasylyev,
D. Maoz, S. Valenti, Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger, Nature
551 (7678) (2017) 64–66. arXiv:1710.05843, doi:10.1038/nature24291.
URL http://aquarius.elte.hu/glade/http://www.nature.com/articles/nature24291

[7] D. A. Coulter, R. J. Foley, C. D. Kilpatrick, M. R. Drout, A. L. Piro, B. J. Shappee, M. R. Siebert, J. D. Simon, N. Ulloa,
D. Kasen, et al., Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source, Science
358 (6370) (2017) 1556–1558. arXiv:1710.05452, doi:10.1126/science.aap9811.

[8] D. Kasen, B. Metzger, J. Barnes, E. Quataert, E. Ramirez-Ruiz, Origin of the heavy elements in binary neutron-star
mergers from a gravitational-wave event, Nature 551 (7678) (2017) 80–84. arXiv:1710.05463, doi:10.1038/nature24453.
URL http://dx.doi.org/10.1038/nature24453http://www.nature.com/articles/nature24453

[9] D. Watson, C. J. Hansen, J. Selsing, A. Koch, D. B. Malesani, A. C. Andersen, J. P. U. Fynbo, A. Arcones, A. Bauswein,
S. Covino, et al., Identification of strontium in the merger of two neutron stars, Nature 574 (7779) (2019) 497–500.
arXiv:1910.10510, doi:10.1038/s41586-019-1676-3.
URL http://arxiv.org/abs/1910.10510%0Ahttp://dx.doi.org/10.1038/s41586-019-1676-3http://www.nature.com/

articles/s41586-019-1676-3

[10] R. Chornock, E. Berger, D. Kasen, P. S. Cowperthwaite, M. Nicholl, V. A. Villar, K. D. Alexander, P. K. Blanchard,
T. Eftekhari, W. Fong, et al., The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo
GW170817. IV. Detection of Near-infrared Signatures of r -process Nucleosynthesis with Gemini-South , The Astro-
physical Journal 848 (2) (2017) L19. arXiv:1710.05454, doi:10.3847/2041-8213/aa905c.
URL http://dx.doi.org/10.3847/2041-8213/aa905c

[11] D. M. Siegel, B. D. Metzger, Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant
Accretion Disks from Neutron Star Mergers: Outflows and r -Process Nucleosynthesis, Physical Review Letters 119 (23)
(2017) 1–7. doi:10.1103/PhysRevLett.119.231102.

[12] J. Lippuner, L. F. Roberts, SkyNet: A Modular Nuclear Reaction Network Library, The Astrophysical Journal Supple-
ment Series 233 (2) (2017) 18. arXiv:1706.06198, doi:10.3847/1538-4365/aa94cb.
URL http://arxiv.org/abs/1706.06198%0Ahttp://dx.doi.org/10.3847/1538-4365/aa94cbhttp://stacks.iop.org/

0067-0049/233/i=2/a=18?key=crossref.c163bc33b417333e158c47f7f5ff566a
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[38] P. Möller, J. R. Nix, W. D. Myers, W. J. Swiatecki, Nuclear ground-state masses and deformations, Atomic Data and
Nuclear Data Tables 59 (2) (1995) 185–381. arXiv:9308022, doi:10.1006/adnd.1995.1002.

[39] K. I. Smith, β Delayed Neutron Emission Studies of Neutron-Rich Palladium and Silver Isotopes, Ph.D. thesis, University
of Notre Dame (2014).

[40] F. Montes, A. Estrade, P. T. Hosmer, S. N. Liddick, P. F. Mantica, A. C. Morton, W. F. Mueller, M. Ouellette, E. Pellegrini,
P. Santi, et al., β-decay half-lives and β-delayed neutron emission probabilities for neutron rich nuclei close to the N = 82
r-process path, Physical Review C - Nuclear Physics 73 (3) (2006) 1–9. doi:10.1103/PhysRevC.73.035801.
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Nuclide P1n [%] Half-life [ms] Nuclide P1n [%] Half-life [ms] Nuclide P1n [%] Half-life [ms]
115Tc∗ 19(5) 70(9) 121Rh∗ 13.4(8) 73(2) 128Pd∗ 10(7) 52(10)
116Tc∗ 17(7) 64(16) 122Rh∗ 11.3(7) 52.4(15) 124Ag 2.3(11) 205(17)
116Ru∗ < 0.8 200(11) 123Rh∗ 24.2(14) 42.2(18) 125Ag 2.2(11) 146(11)
117Ru∗ 2.4(10) 162(9) 124Rh∗ 28(5) 35(3) 126Ag 3.8(2) 103.2(14)
118Ru∗ < 4.6 98(10) 121Pd < 1.7 290(20) 127Ag 5.5(2) 89.1(9)
119Ru∗ 6(5) 57(13) 122Pd < 2.2 203(12) 128Ag 9.3(5) 67.4(16)
120Ru∗ 6(3) 48(7) 123Pd 1.4(3) 114(2) 129Ag 17.9(14) 55(3)
121Ru∗ 13(4) 37(5) 124Pd 0.89(20) 94(3) 127Cd∗ < 1.2 340(30)
118Rh 2.1(9) 294(17) 125Pd 3.7(4) 64.4(17) 128Cd∗ < 1.9 243(11)
119Rh 3.4(9) 192(12) 126Pd 4.9(9) 51(3) 129Cd∗ 1.84(15) 155.9(13)
120Rh 7.2(16) 150(15) 127Pd 9(3) 39(5) 130Cd 3.0(2) 134(3)
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