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NUCLEAR DATA IS UBIQUITOUS IN MODERN APPLICATIONS

Example: fission yields are needed for a variety of applications and cutting-edge science
Industrial applications: simulation of reactors, fuel cycles, waste management
Experiments: backgrounds, isotope production with radioactive ion beams (fragmentation)
Science applications: nucleosynthesis, light curve observations

Other Applications: national security, nonproliferation, nuclear forensics

Figure: Chi-Nu detector (left), Reactor cooling towers (middle), Neutron star merger (right)



NUCLEAR DATA FROM A FORWARD PROBLEM PERSPECTIVE

Outputs
Inputs Model (predictions)
(parameters) (physics, etc.) Data
(measurements, etc.)

When we model nuclear data we think of it as a 'forward' problem

This is an extremely successful approach and is precisely how nuclear theory modeling for nuclear data works

Where f is our model, & are the parameters for the model and y are the predictions



FORWARD PROBLEM... PROBLEMS...

Outputs
Inputs Model (predictions)
(parameters) (physics, etc.) Data
(measurements, etc.)

There can be many challenges with this approach
For instance, how do we update our model if we don't match data?
This can be challenging

We don't always know what modifications are required or the physics could be very hard if not impossible to
model given current computational limitations (e.g. many-body problem)

Treating this as an 'inverse problem' provides an alternative approach...

Figure by Mumpower



NUCLEAR DATA FROM AN INVERSE PROBLEM PERSPECTIVE

Outputs
Inputs I M_odel (predictions)
(parameters) (physics, etc.) I Data
Ve e NN (measEr’ements, etc.)

e = N =

Suppose we start with the nuclear data (and its associated uncertainties)

This approach allows us to vary and optimize the model!

Machine learning and artificial intelligence algorithms are ideal for this class of problems...



AN EXAMPLE OF HOW THIS WORKS (FROM MY LIFE)

My son Zachary has been very keen on learning his letters from an early age
Letters are well known (this represents the data we want to match to)
But the model (being able to draw - eventually letters) must be developed, practiced and finally optimized

This is a complex, iterative process - it takes times to find ' f'!



AN EXAMPLE OF HOW THIS WORKS (FROM MY LIFE)

Example from 1 years old; random drawing episode; time taken: 10 minutes

Drawing by Z. R. Mumpower



AN EXAMPLE OF HOW THIS WORKS (FROM MY LIFE)

Example from 2.5 years old; first ever attempt to draw letters / alphabet; time taken: 2 hours!

Drawing by Z. R. Mumpower



AN EXAMPLE OF HOW THIS WORKS (FROM MY LIFE)

Example from 3.5 years old; drawing scenery; time taken: 10 minutes

Drawing by Z. R. Mumpower



AN EXAMPLE OF HOW THIS WORKS (FROM MY LIFE)

Example from 4 years old; tracing the days of the week; time taken: 30 minutes

Drawing by Z. R. Mumpower



LET'S APPLY THIS IDEA TO NUCLEAR DATA...

A relatively easy choice is a scalar property; how about atomic binding energies (masses)?

—

Recall: f(z) =y

f will be a neural network (a model that can change)

— . . . - .
Yobs are the observations (e.g. Atomic Mass Evaluation) we want to match y with
But what about ?

Why not a physically motivated feature space!?

proton number (Z), neutron number, (IV), nucleon number (4), etc.

This is a completely different approach than past work
Past work relies on matching model residuals: ¢ = (model output) - data

Why not use data as data, rather than mixing model output and data!? (this is difficult to interpret and understand)

Lovell, Mohan, Sprouse & Mumpower submitted (2021)



NETWORK FEATURE SPACES ()

Model Name Feature Space Output
M2 N, Z oM
M6 N, Z, A, A%/3, oM
Z(Z —1)/AY3 (N - Z)*/A
M8 N, Z, A, A*3, Z(Z —1)/AY3, M
(N — 2)?/A, Zro, Neo
M10 N, Z, A, A*3, 2(Z —1)/AY3, M
(N — Z)*/A, Zgo, Neo
AN, AZ
M12 N, Z, A, A*3, 2(Z —1)/AY3, M

(N — Z)*/A, Zgo, Neo
AN, AZ, Nehell, Zshell

MS2 N, Z SM, S,

MS6 N, Z, A, A%/3, SM, Sn
Z(Z —1)/AY3 (N - Z)*/A

MS8 N, Z, A, A*3, 2(Z —1)/AY3, M, S,

(N — 2)?/A, Zro, Neo
MS10 N, Z, A, A*3, Z(Z —1)/AY3, §M, S,
(N — Z%/A, Zgo, Nro
AN, AZ
MS12 N, Z, A, A*3, Z(Z —1)/AY3, §M, S,
(N — Z)*/A, Zgo, Neo
AN, AZ, Nehell, Zshell

We use a variety of possible physically motivated features as inputs into the model

Lovell, Mohan, Sprouse & Mumpower submitted (2021)



MIXTURE DENSITY NETWORK

(ZNA,...) Q

Inputs —> MDN > Outputs
(Bayesian)

We take a Bayesian approach: our network inputs are sampled based on nuclear data uncertainties
Our network outputs are therefore statistical
We can represent outputs by a collection of Gaussians (for masses we only need 1)

Our network therefore, also provides a quanitfied estimate of uncertainty (fully propagated through the model)

Lovell, Mohan, Sprouse & Mumpower submitted (2021)



RESULTS: PREDICTING ATOMIC MASSES
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Here we show results along the lead (Pb) [Z = 82] isotopic chain
Data from the Atomic Mass Evaluation (AME2016) in black stars

Increasing sophistication of the model feature space indicated by M##

Lovell, Mohan, Sprouse & Mumpower submitted (2021)



RESULTS: PREDICTING ATOMIC MASSES
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RESULTS: PREDICTING ATOMIC MASSES

A summary of results

Model 5M ORMS (MeV) Sn ORMS (MeV)

M2 3.90 —

MS2 2.43 1.25

M6 1.57 —

MS6 2.07 1.21

M8 1.66 —

MS8 2.21 0.57
M10 0.58 —
MS10 0.76 0.57
M12 0.56 —
MS12 0.64 0.47

Some lessons learned:
More physics added to the feature space - the better our description of atomic masses

Attempting to fit and predict other mass related quantities (e.g. separation energies) does impact our results
(although marginal compared to choice of feature space)

We do not need deep neural networks to describe atomic masses; nor for extrapolations!

Lovell, Mohan, Sprouse & Mumpower submitted (2021)
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SUMMARY
We are entering the era of computatienal nuclear data

Recent advances:
Los Alamos is developing a state-of-the-art computational nuclear data framework

This framework can combine measurements, observations and theoretical modeling to produce nuclear data with
that can be easily interpreted and shared with the community

As an example, we showed in this talk binding energies of atomic nuclei with a Bayesian neural network

Our methods are general and can be applied to any physical quantity or system

Results / Data / Papers @ MatthewMumpower.com




