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Simulations of r-process nucleosynthesis require nuclear physics information
for thousands of neutron-rich nuclear species from the line of stability to the
neutron drip line. While arguably the most important pieces of nuclear data

for the r-process are the masses and β decay rates, individual neutron capture
rates can also be of key importance in setting the final r-process abundance
pattern. Here we consider the influence of neutron capture rates in forming the
A ∼ 80 and rare earth peaks.
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1. Introduction

The heaviest nuclei in the Solar System owe their origin to neutron cap-

ture reactions. About half of these nuclei are attributed to the r-process

of nucleosynthesis,1,2 in which heavy nuclei are built up by a sequence of

rapid neutron captures, that push material well away from the valley of

stability, and beta decays. Models of the r-process require nuclear physics

information for thousands of nuclei far from stability. For a recent review,

see Ref. 3.

In the classic picture of the r-process, the neutron captures occur in

conditions of high temperature (T9 > 1, where T9 = 109 K) and neutron
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number density (nn > 1022/cm3). In these conditions, photodissociations

are also fast and come into equilibrium with neutron captures. In this (n, γ)-

(γ, n) equilibrium, the abundances along an isotopic chain are given by the

Saha equation, and are therefore determined by the temperature, neutron

density, and the neutron separation energies. The isotopic chains are con-

nected via β-decay. In this picture, the most important pieces of nuclear

data for setting the r-process abundance pattern are therefore the nuclear

masses and β-decay rates.

However, this picture is incomplete. If the r-process does proceed in this

fashion, at some point the temperature will drop and/or the free neutrons

will be depleted and (n, γ)-(γ, n) equilibrium will break down. Alternately,

the r-process can take place in cold environments where (n, γ)-(γ, n) equi-

librium is only briefly established, if at all. Once (n, γ)-(γ, n) equilibrium

fails, individual neutron capture and photodissociation rates play an im-

portant role in shaping the final abundance pattern.

The importance of neutron capture rates in the r-process has been

addressed in, for example, Refs. 4–7, while specifically the role of indi-

vidual neutron capture rates in r-process freezeout has been examined in

Refs. 8–11. Here we extend the work of Ref. 10, which focused on neutron

capture in the A ∼ 130 region, to study the influence of individual neutron

capture rates in the A ∼ 80 and rare earth peak regions. We describe the

mechanisms through which the capture rates influence the r-process abun-

dances and show examples of the nuclei that have particularly influential

rates.

2. Neutron capture rates in the A ∼ 80 region

The A ∼ 80 region falls outside what is considered the ‘strong’ or ‘main’

r-process.3 While the solar abundance pattern of main r-process elements

56 < Z < 83 seems to match those observed in metal-poor halo stars, no

such agreement appears in the pattern of light r-process elements, Z < 47.12

It may be that these light elements owe their origins to a range of nucle-

osynthesis processes, some of which may even be proton-rich; the question

is difficult to answer without isotopic information for the halo star abun-

dances (see, e.g., Ref. 13 and references therein). Here we will proceed with

our sensitivity study assuming the A ∼ 80 nuclei of the solar r-process

pattern are produced in a weak r-process—a rapid neutron capture pro-

cess that makes the first (A ∼ 80), and possibly the second (A ∼ 130),

abundance peak(s) but not the third (A ∼ 195) peak.
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2.1. Weak r-process calculation and sensitivity study

For our neutron capture sensitivity studies in the A ∼ 80 region, we sample

a wide range of hydrodynamic trajectories: black hole-neutron star merger

trajectories from Ref. 14, realistic supernova neutrino-driven wind trajecto-

ries extracted from Ref. 13, and parameterized wind trajectories following

Ref. 15. We use these trajectories as input to our nuclear network calcu-

lations. The nuclear network code16 we employ includes all relevant two-

and three-body charged particle reactions, neutron captures, photodissoci-

ations, and β decays, and can follow the elemental composition from free

protons and neutrons in NSE through the assembly of seeds and the sub-

sequent weak r-process. From these many hundreds of simulations, we pick

out those that produce primarily nuclei in the 70 < A < 130 region, with

no additional constraint (i.e., no attempt is made to pick only simulations

that match the solar r-process pattern of these nuclei). We then use this

set of roughly fifty simulations as the baselines for the sensitivity study. For

each baseline simulation, we individually vary the neutron capture rates of

approximately 300 nuclei that participate in the weak r-process, rerun the

simulation, and compare the results to the baseline.

We quantify the net change in the final r-process abundance pattern

due to a modified capture rate as in Eq. 2 of Ref. 10. Fig. 1 shows the

nuclei in the A ∼ 80 region whose capture rates affect a change of > 5%

in the final abundance pattern when the rate is increased by a factor of

100 over a baseline simulation. For the nuclei whose capture rates result

in large fractional changes to the abundance patterns of multiple baseline

simulations (which include most of those highlighted in Fig. 1), the largest

value is shown. As was seen in the A ∼ 130 region, the most influential

capture rates tend to be those of nuclei along the β-decay pathways of the

highly populated nuclei at the top of the closed shell.

2.2. Mechanism

In Ref. 10, we described two ways in which changes to individual neutron

capture rates of nuclei in the A ∼ 130 region affected changes to the global

r-process abundance pattern—an early freezeout photodissociation effect

and a late freezeout neutron capture effect. Here we review the two mech-

anisms and describe their applicability to the A ∼ 80 region.

The black lines in the top panel of Fig. 2 shows the average neutron

separation energies along the actual and equilibrium paths as a function of

decreasing temperature at late times in a hot, high entropy (s/k = 100)
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Fig. 1. Shows the nuclei whose capture rates affect at least a 5−10% (lightest shading),
10−15%, or > 15% (darkest shading) change to the overall r-process abundance pattern
when increased by a factor of 100 over a baseline simulation. Hatchmarks indicate the
nuclei whose capture rates affect at least a 5% change in ten or more simulations.

main r-process, as in Ref. 10. As the free neutrons are depleted, as shown

in the bottom panel, the neutron number density drops, and the equilib-

rium path moves toward stability, where the average separation energies

are larger. At first, the temperature and, therefore, the photodissociation

rates are sufficiently high that the actual path follows the equilibrium path.

As the temperature drops, however, the photodissociation rates cannot ev-

erywhere keep up with the inward motion of the path, and the actual and

equilibrium paths begin to diverge. At this time, individual photodissocia-

tion rates determine where material is able to follow the equilibrium path,

and where material gets stuck and must wait to β decay. At later times, once

T9 < 1, photodissociation rates become small, and the subsequent motion

of the actual path is driven by β decay toward stability. Here, individual

neutron capture rates govern where the last few remaining free neutrons

are captured. A change in the capture rate of a nucleus highly populated

at late times can therefore alter the availability of neutrons for the rest of

the network.

The red lines in the top panel of Fig. 2 shows the average neutron

separation energies along the actual and equilibrium paths for a low en-

tropy (s/k = 10) weak r-process that results in a good match to the solar

abundance pattern for the A ∼ 80 region. The equilibrium path starts out

farther from stability, and thus at lower separation energies, compared to
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Fig. 2. The top panel shows av-
erage neutron separation energies
along the actual (solid lines) and
equilibrium (dashed lines) paths
as a function of temperature
for two baseline r-process sim-
ulations, the high-entropy main
r-process described in Ref. 10
(black lines) and a low-entropy
weak r-process with s/k = 10,
τ = 100 ms, and Ye = 0.250 (red
lines). The bottom panel shows
the corresponding free neutron
abundances for each simulation.

the main r-process example due to the lower entropy conditions. And while

the actual and equilibrium paths begin to diverge at approximately the

same temperature in both cases, in the weak r-process equilibrium begins

to fail not because the free neutrons are depleted, but instead because the

capture rates are too slow to keep up with an equilibrium path that is

moving farther from stability as the temperature drops. At later times and

lower temperatures, the free neutrons are depleted, as shown in the bottom

panel of Fig. 2, and the path moves back to stability primarily via β decay.

We see the operation of the late-freezeout neutron capture effect in

both the main r-process and weak r-process examples of Fig. 2. In this

late-time capture effect, modification of an individual neutron capture rate

of a nucleus that is abundant at late times can change where the last few

available neutrons are captured. Fig. 3 shows this effect, for a capture rate

in the A ∼ 130 region for the main r-process example in the left panel and

for a capture rate in the A ∼ 80 region for the weak r-process example in the

right panel. The solid lines show the change in the net rate that neutrons

are captured by nuclei in the peak region when the neutron capture rate of

a single nucleus is increased by a factor of 100, compared to the baseline

simulation with no capture rate changes. The dashed line shows the change

in the net rate of neutron capture elsewhere in the abundance pattern. As

the left panel of Fig. 3 shows and as was described in Ref. 10, an increase
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Fig. 3. Shows the change in the rate of neutron capture between a baseline simulation
and a simulation which is identical save for the modification of one neutron capture rate.
The left panel shows the change in the rate of neutron capture in the A ∼ 130 peak region
(solid line) compared to the rest of the r-process pattern (dashed line) as a function of
temperature when the neutron capture rate of 131Sn is increased by a factor of 100 in
the main r-process simulation of Ref. 10. The right panel shows the change in the rate
of neutron capture in the A ∼ 80 peak region (solid line) compared to the rest of the
r-process pattern (dashed line) as a function of temperature when the neutron capture
rate of 78Zn is increased by a factor of 100 in the weak r-process simulation depicted in
Fig. 2.

in the capture rate of 131Sn causes a net increase in neutron capture in the

A ∼ 130 region at late times and an equivalent decrease in neutron capture

elsewhere. The right panel illustrates the analogous effect for an increase

in the capture rate of 78Zn: neutron capture increases in the A ∼ 80 region

and decreases everywhere else. In both cases, the nuclei lie along the β-

decay pathway of the nuclei at the top of the closed shell, and so are highly

populated at late times. Changes in their capture rates therefore result in

significant late-time shifts in where neutrons are captured, causing global

changes to the abundance patterns.

We do not, however, observe an early-freezeout photodissociation effect

in this weak r-process example. This is because the actual and equilibrium

paths diverge due to slow capture rates, rather than slow photodissociation

rates as in the main r-process example. The difference in how early freezeout

operates in the weak r-process example opens the door instead to an early

neutron capture effect. Here, changes to individual neutron capture rates

can control where material can capture out to the equilibrium path, and
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Fig. 4. The left panel shows the change in the rate of neutron capture in the A ∼ 80
peak region (solid line) compared to the rest of the r-process pattern (dashed line) as
a function of temperature when the neutron capture rate of 79Ni is reduced by a factor
of 100, for the same baseline weak r-process simulation as the right panel of Fig. 3. The
right panel shows the resulting abundance patterns for the baseline simulation (black
line) and the simulation with the capture rate change (red line).

where material is stuck and must wait to β deay. An example of this effect

is shown in Fig. 4, which again shows changes in the rate at which neutrons

are captured in the peak region compared to elsewhere in the pattern when

one neutron capture rate is changed; here, the neutron capture rate of 79Ni

is decreased by a factor of 100. In the baseline simulation just before freeze-

out, 78Ni is at the top of the N = 50 closed shell kink in the path. As the

temperature drops, the equilibrium path nudges further from stability, and

in the baseline simulation the path at nickel shifts to 80Ni. This consumes

many neutrons, since 78Ni is the most abundant nucleus in the simulation.

In the simulation where the neutron capture rate of 79Ni is decreased, how-

ever, capture from 78Ni to 80Ni is impeded. The actual path remains at
78Ni, and as a result many fewer neutrons are captured in the A ∼ 80 re-

gion compared to the baseline simulation. Unlike the late-freezeout capture

effect, the rate of neutron captures elsewhere is largely not affected, since

most of the network is still in equilibrium at this time and Yn is large. The

effect of the fewer neutrons captured in the A ∼ 80 region shows up as

a shift in the point of neutron exhaustion (where, e.g., Yn . 0.01 in Fig.

2) to lower temperatures, leading to the spike in the change in the rate of

neutron captures just below T9 ∼ 1 shown in Fig. 4. The extra neutron

capture at late times leads to a slightly stronger r-process, as seen in the

final abundance patterns (right panel of Fig. 4).
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3. Neutron capture rates in the rare-earth region

The rare earth peak is the smaller abundance peak between the closed

shell peaks at A ∼ 130 and A ∼ 195. It likely forms dynamically, at late

times in the r-process, as the path encounters a local deformation maximum

around A ∼ 160 while moving back toward stability.17,18 This formation

mechanism is very sensitive to the nuclear physics of the nuclei in the A ∼

160 region,7,18 including the neutron capture rates.11

Since the net abundance of the rare earth peak is orders of magnitude

less than the main peaks, neutron capture rates in this region have cor-

respondingly weaker leverage on the overall abundance pattern. However,

large local effects are possible as changes to the capture rates can disrupt

the rare earth peak formation mechanism. In order to quantify the impact

of neutron capture rates in this region, we switch from the fractional change

used in Sec. 2 to a measure emphasizing local changes as defined in Ref. 11.

For the sensitivity study we use two types of main r-process baseline

simulations: a classic hot r-process simulation using the parameterization

of Ref. 19 with entropy s/k = 85, timescale τ = 85 ms, and initial electron

fraction Ye = 0.25, and a cold r-process simulation from the parameteri-

zation of Ref. 15 with s/k = 40, τ = 50 ms, and Ye = 0.25. In the cold

r-process simulation, (n, γ)-(γ, n) equilibrium holds only briefly, as the pho-

todissociation rates quickly become too slow to maintain equilibrium. The

results from the sensitivity study are shown in Fig. 5. Both types of sim-

ulations show heightened sensitivity to the neutron capture rates in the

rare earth peak region 160 < A < 168. In addition, the early failure of

(n, γ)-(γ, n) equilibrium in the cold r-process simulation makes the out-

come particularly dependent on the capture rates of even-N nuclei farther

from stability.

4. Conclusion

In our study of neutron capture in the A ∼ 80 region of a weak r-process,

we find that the most important capture rates for the widest range of ther-

modynamic conditions tend to be those of nuclei that are populated in late

freezeout by the β-decay of nuclei at the top of the N = 50 closed shell.

These nuclei exhibit a late freezeout capture effect that functions as de-

scribed for the A ∼ 130 region in a main r-process.9,10 We also note that

an early time capture effect is possible in nuclei that fall out of equilibrium

well before the rest of the network. If such a nucleus is near the N = 50

closed shell, its capture rate can alter how quickly neutrons are consumed
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Fig. 5. Shows the nuclei whose capture rates significantly influence the abundance pat-
tern in the rare earth region for the hot (top) and cold (bottom) r-process baseline sim-
ulations described in Sec. 3. The shadings correspond to the F -measure11 of 100 − 200
(lightest shading), 200−300, or > 300 (darkest shading, largest effect) that results when
the capture rate is increased by a factor of 10.

and therefore how far a weak r-process proceeds.

In the region between the A ∼ 130 and A ∼ 195 abundance peaks,

changes to individual capture rates are less likely to affect global changes

to the r-process pattern but can significantly alter the final shape of the

rare earth peak. Most of the influential rates in this region are therefore

of nuclei in the peak region that are populated at late times in the r-

process. Additionally, capture rates of even-N nuclei farther from stability
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can become important in cases where (n, γ)-(γ, n) equilibrium is only briefly

established if at all.

A complete picture of the r-process will require significant advances in

our knowledge of the nuclear physics of nuclei far from stability. While most

theoretical and experimental efforts are currently directed toward masses

and β-decay rates, we find neutron capture rates can also have an important

impact on the r-process abundance pattern and should not be ignored.
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